
N A S A C O N T R A C T O R

R E P O R T

STUDY OE SPACEBORNE
MULTIPROCESSING

PHASE I

by Loztis J. Kocxela

Prepared .by
NORTH AMERICAN ROCKWELL CORPORATION

Anaheim, Calif.

for Electronics Research Cetzter
. ,

. .

N A T I O N A L A E R O N A U T I C S A N D S P A C E A D M I N I S T R A T I O N W A S H I N G T O N , D . C . F E B R U A R Y 1970

NASA CR- 1446
TECH LIBRARY KAFB. NM

STUDY OF SPACEBORNE MULTIPROCESSING

PHASE I

By Louis J. Koczela

Distribution of this report is provided in the interest of
information exchange. Responsibility for the contents
resides in the author or organization that prepared it.

Issued by Originator as Report No. C6-1476.10/33

Prepared under Contract No. NAS 12-108 by
NORTH AMERICAN ROCKWELL CORPOFtATION

Anaheim, Calif.

for Electronics Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
-
For sale by the Clearinghouse for Federal Scientific and Technical Information

Springfield, Virginia 22151 - Price $3.00

The study described i n t h i s r epor t was performed by
Data Systems Division of Autonetics, a Division of North
American Rockwell Corporation, Anaheim, Caiifornia. The
work was done under NASA Contract NAS 12-108 with Mr. F. H i l l s ,
Electronics Research Center, Computer Research Laboratories,
Cambridge, Massachusetts, as the NASA project engineer.

The study began i n March 1966. The contract par t ic ipants
inc luaea :

L. J. Koczela - Principal Investigator
A. 0. Williman
Q. J. Burnett
F. H. Fowler
J. S. Hirsch
R. A. Hokom

iii

CONTENTS

Page .
Foreword iii
Summary 1

I . Introduction
II . Computer Requirements

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

Introduction
Mission Profile
Mission Objectives
Mission Functions
Spacecraft System Description
Computational and Data Processing Functions
Mission-Function Time Line Profile
Detailed Computational Functions
Computer Requirements

111 . Component Technology
3.1 Introduction
3.2 Circuit Technology
3 . 3 Memory Technology

rV . Multiprocessor Candidate Organization
4.1 Introduction
4.2 Multi-Computer and Modular Multiprocessor
4 . 3 Distributed Processar

V . Simulation and Evaluation of Candidate Organizations
5.1 Simulation and Reliability Analysis
5.2 Critical Evaluation and Recommended Approach

VI . Detailed Design of the Modular Multiprocessor Organization . . .
6.1 Modules
6.2 Failure and Error Detection and Control

VI1 . Summary and Recommendations
Appendix A . Detailed Computer Requirements
Appendix B . Mass Storage Considerations
Appendix C . Fault and Erro r Control
References .

V

1

3

3
6
7
7
8
15
19
19
47

55

55
55
58

59

59
59
123

161

161
181

189

189
272

299

301

311

317
335

I LLUSTRATIONS

Figure

1.1 .
2.1 .
2.2 .
2.3 .
2.4 .
2.5 .
2.6 .
2.7 .
2.8 .
2.9 .

2.10 .
3.1 .
4.1 .
4.2 .
4.3 .
4.4 .
4.5 .
4.6 .
4.7 .
4.8 .
4.9 .

4.10 .
4.11 .
4.12 .
4.13 .
4.14 .
4.15 .
4.16 .
4.17 .
4.18 .
4.19 .
4.20 .
4.21 .
4.22 .
4.23 .
4.24 .
4.25 .
4.26 .
4-2 7 .
4-2 a .
4.29 .
4.30 .

. Page

Block Diagram of Study Approach 2

Scientific Experiment and Exploration Function Data

Computational and Data Processing Function 16
Probability Density Function 39
Cumulative Distribution Function 39
K CO Alpha Spectrum 41

Command and Control Function Interface Diagram 9

Handling Interface Diagram 10
Subsystems . Computer Interfaces 12

Ffow &art for Status Monitoring Routine 46
Computer Storage Requirements 51
Computer Speed Requirements 52
Cross-Section of P-Channel Junction Type MOS/SOS Transistor . 56
18-Bit Instruction Word 60
16-Bit Instruction Word 60
Instruction Word Formats 62
Duplexed Computer 72
Two Computer Approach 73
12K Memory Board Supply and On-Off Switch 76
Output Switching of Critical Conditioners 80
Logic Levels for Control of Critical Conditions 81
Scientific Experiment Program Logical Representation 93
Sequence of Periodic Program Execution 96
Queue Chain 97
Priority Actions 97
Memory Allocation 100
Reconfiguration Process 101
Reconfiguration Process 102
Software Costs 106
Multiprocessor 108
Approximate Line Count 111
General Multiprocessor Configuration 115
Sequential Steps in Computation 125
Applied Parallelism in the Computation 125
Applied and Natural Parallelism in the Computation 125
Applied Parallelism . Degree of Complexlty vs Gain 129
Natural Parallelism Curve 130
Distributed Processor 134
Distributed Processor Cell 136
Active Redundant Test Cells Within a Cell Group 140
Distributed Processor Cell Group Configuration During
Group Testing 142
General Distributed Processor Configuration 145
Logic Array 150

vii

I LLUSTRAT I ONS (CONTI

Figure

4-3 1.
4-32.
4-33.
4-34.
4-35.
4-36.
4-37.
4-38.
5-1.
5-2.
5-3.
5-4.

5-5.

5-6.
5-7.

Page -
151
153
154
154
155
156
157
158
163
166
172
173
174

175

5-8.
5-9.

5-10.
5-11.
thru
5-13.
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7,
6-8.

6-9.
6-10.
6-11.

6-12.
6-13.
6-14.
6-15.
6-16.
6-17.

The Cell-Group Machine
Input Data Item/Macro Formats
Cell-Group Status Board Entry
Task Status Table Entry
Dead Restart Program

Output Data Item/Message Formats

Transition Reconfiguration (Phase Start)
Transition Reconfiguration (Unanticipated).
Block Diagram of Monte Carlo Simulation

Multicomputer On-Off Failure Rate Effects on P
Erro r In Monte Carlo Simulations
Multicomputer Probability of Success

S
Multicomputer Failure Detection Probability Effects on Ps . . .
Multicomputer Unavailability
Multicomputer P v s Number of Computers With
Pd = 0.99 and 1.0

Multiprocessor Probability of Failure Detection Effects on P

Multiprocessor Unavailability
Monte Carlo Simulation of Spaceborne Multiprocessing Study - . .
Multicomputer Organization
Multiprocessor Organization
Processor Block Diagram
Instruction Word Format
Real Time Clock.
Processor Registers
Processor Registers and Connections
Memory Cycle Timing
Basic Memory Cell Utilizing Complementary MOS Transistors. .
Without Selection or Readout Provisions
Logical Operation of a Coincident Select Memory Cell
Organization of a Coincident Select Memory Cell Arm.
Connection of 18 Arrays to Form a 4,096 Word, 18 Bit,
Subassembly for a Memory Module
Organization of a 12,000 Word, 18 Bit, Memory Module
Memory Module Volatility Circumvention
12x18 3D Memory (Todays Technology).
NDRO Multiword Memory (Todays Technology)
NDRO Read and Write Signals
Future NDRO Read and Write Signals

S

Multiprocessor Probability of Success
S '

.

176
178
179
180
182

thru
184
190
190
191
192
2 16
217
22 1

230
231
233

234
235
238
2 43
2 45
2 85
2 50

viii

Figure

6.18 .
6.19 .
6.20 .
6.21 .
A.1 .
c.1 .
c.2 .
c.3 .
c.4 .
c.5 .

I LLUSTRATI ONS (CONTl

Pea'e

Future NDRO Memory 251
Input/Output Module 259

Executive Flow Diagrams 291
Computer Requirements per Phase 309
Detection of Standard Faults by Complementation 322
Self-checking Adder Without High-speed Carry 323
Two Bits of Adder Used in Parity Checking Addition 325
Parity Checker Used in Parity Checking Addition 326

Coincident Current Memory - 4K Stack Fault Dktection 280

3-Bit Parity Checker 326

C6-1476.10/33

TABLES

Table -
2-1 ..
2 -2 ..
2-3.
2-4.
2-5.
4-1.
4-2.

4-3.
4-4.
6-1.
6-2.
A-1.

- Page

Scientific Experimentation Subsystem Functions 14
Mission-Function Time Line Profile 20
Interplanetary Experiment Computer Requirements - . . - - 44
M a r s Orbital Experiment Computer Requirements - - - . - 45
Computer Requirements by Mission Phase - - . - . 48
Speed and Storage Requirements for Phase 12, M a r s Orbital . . 65
Speed and Storage Requirements for Phase 12, Mars Orbital, . -
With a 12 Bit and 18 Bit Word Length - - - . - - - . . 66
Non-Critical Phase Reconfiguration Summary . - - - . . . 116
Reductions in Computation Time Due to Parallelism . . - . . 127
Software Test Characteristics- - - - 2 72
Executive Data Base Table - . - 288
Computer Requirements . - . . - 301

xi

. ..

STUDY O F SPACEBORNE MULTIPROCESSING

Louis J. Koczela
Autonetics, A Division of North American Aviation, Inc.

Anaheim, Calif.

SUMMARY

This final report presents the results of a research study of multiprocessing
computer organizations and their application to future space missions. A manned
Mars lander mission in the 1980 time period was investigated and computer require-
ments defined. Three multiprocessing computer organizations were developed: the
multicomputer, the modular multiprocessor, and the distributed processor. An
evaluation of the three organizations resulted in the modular multiprocessor a s the
optimum candidate for the selected mission; this organization was then subject to a
detailed design investigation.

I. INTRODUCTION

The purpose of this study was to investigate multiprocessing computer
organizations and their application to future space missions. A block diagram of the
study approach is given in Figure 1-1. As a base for the study, manned space missions
in the 1980 time period were selected to define the computational requirements. The
particular mission selected for a detailed investigation to define the requirements was
the manned Mars landing mission. This mission covers a broad spectrum of require-
ments (long duration, widely varying computational loads, and high reliability demands);
therefore, using it a s a base will result in applicability to many other missions in the
same time period such a s extended earth orbital space stations.

The selected mission was investigated in detail to define the requirements. This
effort is covered in Section 11 of this report. Based on an analysis of the mission and
computational and data processing functions, the computer requirements were defined
for each phase or mode of the mission,

In addition to defining the requirements, it was necessary to define the technology
to be considered as sta.te-of-the-art for the time period of interest before proceeding
with an investigation of multiprocessor configurations. Although the time period of
the missions considered is 1980, it is necessary to use technology that will be avail-
able for designers in approximately 1975, so that reliability has been established. The
investigation and definition of the technology base is given in Section HI.

1

Multiprocessing organizations are considered to offer considerable advantages
in application to future manned space missions. These organizations can result in:
(a) efficiently meeting the widely varying computational loads of different phases of
a mission, (b) efficiently mechanizing the diverse requirements of various subsystems
of a mission such as a command module and a lander module, (c) an overall net
reduction in power due to the ability to turn modules on and off, (d) increase in
reliability, given that failure rates of dormant equipment a r e lower than operating
equipment, and (e) enhancement of probability of mission success and availability due
to reconfiguration around failures at a low module level.

Using the requirements and technology defined a s a base, three organizational
approaches to multiprocessing were investigated. These were (a) multicomputer,
(b) modular multiprocessor, and (c) the distributedprocessor. The general organiza-
tional features such as word length, instruction format, were evaluated and traded
off. Each of the three organizations was subject to a preliminary logic design, a
failure analysis, and a software analysis. This topic is treated in Section IV.

Using the results of the preliminary design a simulation (reliability) and critical
evaluation of the three candidates was performed (Section V). From the results of
the evaluation the modular multiprocessor was selected for further investigation.

In order to evaluate the candidate multiprocessing organizations, the computer
system characteristics were weighted by NASA ERC in terms of relative importance
as follows: (a) Computer Probability of Mission Success - 100, (b) Power - 10,
(c) Growth Potential - 4, (d) Development risk - 1, (e) Weight - 1, (0 Size - 1,
(g) cost - 1.

Extensive investigation was performed on the selected organization in terms of
design, failure analysis and software considerations, these topics are covered inSectionVI.

COMPUTATIONAL
REQUIREMENTS

DEFINE
MISSION
MODES

MISSION
EQUATIONS
ERRORS

COMPUTER -b
REQUIREMENTS

SOLUTION RATES
I

MULTIPROCESSING
CONFIGURATIONS

PRELIMINARY CONFIGURATION
REPRESENTATIVE PERFORMANCE
CONFIGURATIONS DESIGN ANALYSIS

CRITICAL
EVALUATION

.. ~ -

PERFORM
EVALUATION PRELIMINARY

EVALUATION

CONFIGURATION
DESIGN

. + 4 . >

SELECT
CONFIGURATIONS -b CoNFIGURAT1oN -b

DETAILED
FAILURE

DESIGN -b ANALYSIS

SCFTWARE

DESIGN
,- I J

Figure 1-1. 3lock Diagram of Study Approach

2

1 1 . COMPUTER REQU I REMENTS

2.1 INTRODUCTION

In the study of Multiprocessing Systems, a problem immediately a r i ses as to the
meaning of several terms. Since the extended use of more complex structural
computers is rather recent, the terms associated with them have not become firm.
A great deal of confusion arises in reading reports and in verbal communication if the
meaning of terms is not clear: therefore, further definitions shall be given. The
following is an attempt to define some common terms in accordance with the most
common usage. Al l use of the terms in this report will be consistent with the
definitions.

Availability (operational)

The probability that a system or equipment when used under stated conditions
and in an actual supply environment shall operate satisfactorily at any given
time. It may be expressed as:

A0
- MTBM
- MTBM + MDT

where

MTBM = mean time between maintenance and ready time during
the same interval

MDT = mean downtime

Availability (inherent)

Similar to A, except relates to ideal supply environment and does not consider
scheduled or preventive maintenance.

Ai - MTBF + MTTR
- MTBF

Backup

Refers to a function o r hardware not involved in a primary mode, function, o r
task which will be used in case of failure of the primary.

Cellular Arrays

An arrangement of computational cells (generally rectangular), all perform
basic logic or arithmetic operations and can derive inputs and send outputs
to each of its neighbors. (The information is generally transmitted through
the array in parallel with operations being performed on a bit per cell per
operation basis.) One form of distributed logic.

3

Distributed Logic

The decentralization of the logic elements on an array basis. Each element
(cell) of the array can communicate with a number of other cells. Each of the
cells has some memory associated with it. The complexity of each cell can
vary from the execution of a few logic operations to a (small computer.) The
control for execution of a program is distributed among the cells.

Iterative Array

Synonymous with "Cellular Array.

Iterative Circuit Computer

Synonymous with "Distributed Logic.

Maintainability (Ref: MIL-STD-778, 8 April 19641

Maintainability is a characteristic of design and installation which is expressed
as the probability that an item will conform to specified conditions within a
given period of time when maintenance action is performed in accordance with
prescribed procedures and resources.

Microprogramming

Computer control mechanization wherein the instructions are handled as macros.
Each macro is interpreted in terms of micro-operations by either programmed
o r modifiable logic (core or diode memory). The micro operations are the basic
instruction set of the computer and are defined in terms basic, logic, shift,
and transfer operations. (Same as "stored logic..")

Multicomputer

Two or more computers with intercommunication which operate on one or more
programs. The computer implied consists of an arithmetic unit-memory-and
input/'output unit.

Multiprocessing

Simultaneous execution of two or more programs or sequences of instructions
by a multipath structure.

Multiprocessor

A computer capable of multiprocessing (multiple arithmetic units, memories,
and input/output units with versatile communication is one hardware approach).
Cellular arrays is another.

Multiprogramming

Interleaved execution of two or more programs by a computer complex.

4

Parallel Processing

Simultaneous execution of two or more sequences of instructions (generally
branches of same program) by a computer having multiple arithmetic o r logic
units.

Probability of Mission Success

Probability that mission objectives are attained.

Reconfiguration

Changing pieces of hardware performing a function. This may be manual or
automatic and may be performed as a result of system failure or change in
mission mode.

Redundancy

Additional time, computation, or hardware used above the basic requirements of
a function so that a required probability of success of that function can be
attained.

Functional Redundancy - Use additional or backup functions.

Active Redundancx - Techniques which sense faults, isolate them and
switch out or replace failed equipment.

Passive Redundancy - Faults are not detected, they are masked by
extra equipment. Defective equipment remains in place.

Reliabilitv (RETMA definition)

Reliability is the probability of a device performing its purpose adequately for
the period of time intended under the operating conditions encountered. Measure
commonly used is Mean-Time-Between-Failure (MTBF).

Reoair

The process of returning an item to a specified condition including preparation,
fault location, item procurement, fault correction, adjustment and calibration,
and final test.

Active Repair Time - The time during which one or more technicians
a re working on the item to effect a repair.

Mean Time to Repair (MTTR) - The statistical mean of the distribution
of times-to-repair, The summation of the active repair times during
a given period of time divided by the total number of malfunctions during
the same time interval.

Repairability - The capability of an item to be repaired.

5

Self-organizing

Processes employing neural network type redundancy. System reorganizes
around faulty -modules or cells. (Infers random type techniques.)

Self-Repairing

A self-repairing system is one which has the capability to continue to work
correctly, even i f some of its elements malfunction.

In high redundancy techniques e r ro r s may be masked by voting techniques.
In lesser redundant techniques errors must be detected, isolated, and
then the system is reconfigured around the fault by changing its mode of
operation.

Time Sharing

Time multiplexing of several users on a computer. This will, in general,
require processing of different programs for each user. No restrictions on
type of computer a re implied by time sharing definition.

The manned Mars landing and exploration mission was selected as representative
for application of spaceborne multiprocessing techniques. The establishment of the
mission requirements is a necessary first step in the process of developing an appro-
priate multiprocessor concept. A number of studies relating to manned Mars missions
have been conducted throughout industry under numerous NASA contracts. The docu-
mented results of these studies were reviewed with the objective of establishing the
particular mission requirements which would influence the on-board computational
and data processing facility. By taking full advantage of related studies, a realistic
appraisal of mission requirements was obtained with a minimum of delay in the
conduct of the multiprocessor study. The following discussion, as it relates to the
manned Mars mission description is based primarily upon information provided in
references 1 through 11.

2.2 MISSION PROFILE

The selected manned Mars mission covers a 420-day period and consists of
three primary phases, i. e., Trans Mars, Mars Stay and Trans-Earth. The following
is a brief description of each phase.

2.2.1 Trans-Mars

The trans-Mars phase lasts approximately 120 days and begins after the space
craft is placed in an Earth orbit and checkout of all subsystems is completed. The
first operation is an Earth to Mars injection maneuver. The trajectory is then
determined utilizing Earth tracking facilities in addition to the on-board system to
accurately deteimine the trajectory errors and the required corrections. The next
operation is the selection of the desired spin plane and subsequent spin-up. This
establishes the artificial gravity environment required for a major part of the mission
duration. Navigational fixes are made as the mission proceeds with velocity
corrections performed when necessary. The spacecraft is de-spun about five days
prior to Mars arrival. It is then lined up for proper altitude and attitude into the
entry corridor to perform the aerodynamic braking maneuver. A circular Mars
orbit is obtained by applying a velocity increment utilizing the mid-course propulsion
system.

6

I - -

2.2.2 Mars Stay

During the Mars stay period, which lasts about 40 days, three major operations
occur. These are: separation of the Mars Excursion Module (MEM) probably during
the first day in orbit; rendezvous and docking of the MEM with the mission module,
about the last day in orbit; and transfer of scientific samples and equipment from the
MEM to the mission module. The MEM is then abandoned in Mars orbit where it may,
using automated sensors, continue to measure and transmit data to Earth. Communi-
cations with the MEM and Earth as well as scientific observation of Mars if3 continu-
ously maintained by the mission module during the Mars stay period.

2.2.3 Trans-Earth

This phase lasts about 260 days. The first operation, following navigational
determinations of exit trajectory and launch time, is the Mars to Earth injection
maneuver. Navigational fixes are performed for the next several days and corrections
carried out utilizing the mid-course stage. A s the trajectory is finalized, the space-
craft is spun up. Navigational fixes are periodically made to provide corrections
during spin coast. Approximately five days prior to Earth arrival the spacecraft is
de-spun. The final entry trajectory is determined and corrections made. About two
days to as little as three hours before arrival, the crew enters the Earth Re-entry
Module (ERM) and separates from the mission module.

2.3 MISSION OBJECTIVES

The primary objective of the manned Mars mission is exploration of the surface
of the planet Mars to develop knowledge concerning its composition, structure and
life forms. Exploration of the surface will be carried out by personnel and scientific
equipment which will be landed on the planet. The mission module supports the
landing party in this effort by providing communications and data processing for the
MEM and also by performing cooperative experimentation and observation, Addition-
ally, while in Mars orbit, it can take advantage of its wide coverage of the planet to
acquire data beyond the exploration radius of the landing party.

Although Mars exploration is the primary objective, only ten percent of the
overall mission time is spent in the Mars area, Consequently, there is considerable
experimentation and observation activity carried out during the trans-Mars and
trans-Earth phases.

2.4 MlSSXON FUNCTIONS

There are three major functions that must take place throughout the entire
mission in order to assure successful accomplishment. These mission functions,
so called,because they are of a broad enough nature not to be included within the
subsystem functions but rather establish the requirements for subsystem functions,
are :

1. Life support (Crew Survival)

2. Command and Control

3. Scientific Experimentation and Exploration

7

The life support functions assure the physical and psychological health of the
crew. These functions would include physiological and psychological testing, health
preservation activities, radiation protection, rescue operations, and checkout
operations prior to major maneuvers. It is not likely that the computational and data
processing complex will be essential to the critical crew survival aspects of the life
support function. However, the computer will be used to perform tasks necessary for
the testing and checkout operations, which are essential to overall mission success.

The command and control function is cmcerned with monitoring operations,
control of subsystems, control of interfaces, abort decision and control, command
locations (internal and external repair crews, and MEM crew). The major components
of command and control include spacecraft guidance and control, telecommunications,
crew displays and controls, power distribution and overall mission module interfaces.
A simplified interface diagram of the command and control function is shown in
Figure 2-1. Through computation, data collection, storage and display, the command
and control function provides appropriate orientation and sequencing command signals
to major subsystems and informs the crew of subsystem operation, consumption rate
and storage level of storables, navigational position, spacecraft attitude, and antenna
and instrument orientation. It also records important information on subsystem
malfunctions, command messages and mission history.

The scientific experimentation and exploration function is closely related to the
mission profile. For example, on arrival or departure from the planets (Mars and
Earth), the main experiments a re those connected with planetary observations.
During the trans-Mars and trans-Earth phases, the experimental effort is concentrated
on the interplanetary bodies and solar physics. The interplanetary environment is
continuously monitored.

The crew members are an integral part of the scientific subsystem and therefore,
will participate in the preparation and operation of certain experiments. They will
program times for data acquisition, assist in observations, and reduce some data
prior to transmission. Some operations will be automated but with provisions for
manual data check and override.

A simplfied interface diagram illustrating the data handling associated with the
scientific experiment and exploration function is shown in Figure 2-2.

2.5 SPACECRAFT SYSTEM DESCRIPTION

2.5.1 Spacecraft Configuration

The major elements of the spacecraft, exclusive of propulsion units, are the
Mars Mission Module (MMM), the Mars Excursion Module (MEM), and the Earth
Re-entry Module (ERM). All three modules will contain subsystems which require
computational and data processing support. For conducting the multiprocessor study,
emphasis has been placed upon the MMM. However, the necessity for compatibility
between subsystems throughout the overall spacecraft, makes the multiprocessor
concept for satisfying computational and data processing requirements applicable to
all three major modules.

2.5.2 Major Subsystems

There are six major subsystems which require varying degrees of computational
and data processing activity and consequently exert the primary influence on

8

LFE SUPPORT SYSTEM SCIENTIFIC EXpERlMENT AND EXPLORATION SYSTEM

c ATTITUDE
CONTROL
SENSORS

L
7

L BAND T R A N S W E R AND RECErVER
S BAND TRANS-R

AND RECENER
-

_I

t c

I
I

CONTROLS AND DISPIAYS
CONSOLE

J
b

4 7 COMMUNICATIONS ANTENNAS

COMPUTER/DATA PROCESSOR I 1 I

ATTlTLDE CONTROL PROPULSION EARTH REENTRY MARS EXCURSION UNMANNED RECON GROUND OR ORBITAL
TORQUE SOURCES STAGES MODUZE (ERM) MODULE (MEW PROBES SUPPORT FACILITY

Figure 2-1. Command and Control Function Interface Diagram

SCIENTIFIC SENSORS

*SPECTROMETERS
*RADIOMETERS
*MAGNETOMETERS
*ULTRAVIOLET
*INFRARED

STATUS MOMTORS OF
OTHER VEHICLE SU%
SYSTEMS

IMAGE SENSORS

*VIEWFINDER CAMERA

W E l E S C O E CAMERA

*PAN. CAMERA

*FRAME CAMERAS

1 ANALOG TAPE
RECORDER

j-1
RECORDER

DISPLAY OF
RAW SENSOR

I
I 4

SIGNAL
CONDITIONING UNIT
(SHAPE SIGNAL
WAVEFORM,
FILTER NOISE)

I

PROVIDES B A C L UP
DURING DOWNTIME
OF COMPUTER

FOR DIRECT T O

EARTH TRANSMISSION

CONTROLS

MONITORS .
FILM
PROCESSORS
(FILM DEVEL-
OPED IN NEAR
REAL TIME)

c c ,

FILM
VIEWERS

t c +

PHOTO
SCANNERS
(FOR SELECTED

I C ,

I
P I C T U ~
ONLY)

t I
1 I

DATA I
CONVERTERS I
AND I

I
BUFFERS I

1 ~- ""

t I
L ~ I

DATA
PROCESSOR

t
COMMAND AND
CONTROL SYSTEM
(GUIDANCE AND DICRAL TAPE

RECORDER DISPlAY CONSOLE + CONTROL,
CONTROLS AM>

TELECOMMUNICATIONS
ETC)

r b

Figure 2-2. Scientific Experiment and Exploration Function Data Handling
Interface Diagram

10

requirements for the on-board computer system. These subsystems are:
(1) Guidance and Navigation, (2) Attitude Control, (3) Telecommunications,
(4) Scientific Sensor Experiments, (5) Reconnaissance. and (6) Life Support. A
simplified interface block diagram which identifies the major components of each
subsystem is shown in Figure 2-3. The following paragraphs are brief discussions
of the functional requirements of each subsystem.

2.5.2.1 Guidance and Navigation

The guidance unit of any system concept must supervise the flight according to
a flight plan. In doing so, the guidance unit is required to generate and issue
commands to the attitude control subsystem, propulsion subsystem, and communica-
tion subsystem. The navigation unit is required to determine all kinematic variables
compatible with the functions performed by the guidance unit. In general, these
kinematic variables are position, velocity, acceleration, attitude, angular velocity,
angular acceleration, and time. The variables are determined with respect to a
specified reference frame.

The guidance and navigation subsystem, for utilization throughout the manned
Mars mission, must be able to determine the kinematic state of the spacecraft at all
times during the mission and through comparison with the required kinematic state
at that moment, as derived from targeting data; be able to generate suitable
commands for the velocity-to-be-gained required for the correction of any naviga-
tional errors , A s shown in Figure 2-3, the main elements in the subsystem are
a stable platform inertial measuring unit (IMU), a scanning telescope, a sextant,
and a ranging sensor (radar).

2.5.2.2 Attitude Control

The attitude control subsystem operates in conjunction with the guidance and
navigation subsystem to provide: (1) angular orientation and stabilization of the
spacecraft about three axes, (2) translation control during rendezvous and docking
maneuver, and (3) thrust vector control during coast corrections.

The major elements of the attitude control subsystem a re shown in Figure 2-3.
The body fixed accelerometers and gyros also provide a back-up inertial measuring
unit (strapdown) for the guidance and navigation subsystem. The three-axis rate gyro
package contains the sensing elements and associated circuitry required to provide
angular rate stabilization control and display information. The horizon sensor senses
the location of local vertical with respect to the body reference while the sun sensor
senses the line of sight (LOS) of the sun with respect to the body reference. The
astrotracker senses the LOS with respect to selected stars.

The propulsion engines and reaction jets are also included as a part of the
attitude control subsystem. The attitude and translation commands a re combined,
decoded and converted to jet selection signals which activate the reaction jet control
valves. Similarly, for propulsion engine control, attitude commands are converted
to engine deflection commands.

2.5.2.3 Tele-communications

Each of the three modules (MMM, MEM, ERM) making up the manned Mars
spacecraft will have its own communication functions to perform, with the added

11

LIFE SUPPORT S / S

0 LIFE SUPPORT S / S CONSOLE
0 LIFE SUPPORT S/S

SCIENTIFIC SENSORS S/S

0 CONTROL & DISPLAY CONSOLE
0 ANA= TAPE RECORDER
0 STRIP CHART RECORDER
0 MASS SPECTROMETER
0 MFTEOROID SYSTEM
0 RADIATION SYSTEM
0 MICROWAVE SYSTEM
0 MAGNETIC SYSTEM
0 ULTRAVIOLET SYSTEM
0 VISIBLE LIGHT SYSTEM
0 INFRARED SYSTEM

A?TITUDE CONTROL S / S

0 ATTITUDE CONTROL CONSOLE
0 CIMBALIED STAR TRACKER
0 HORIZON SCANNER
0 SUN SENSOR
0 BODY FIXED ATTITUDE GYROS
0 BODY F M E D ACCELEROMETERS
0 BODY FIXED RATE GYROS
0 REACTION JETS
0 PROPULSION ENGINES GIMBAL

ACTUATORS

SUBSYSTEMS SUBSYSTEM 0 ALL SUBSYSTEMS
PERFORMANCE SEW-TEST
MONITORING COMPUTATIONS 0 SELF TEST CONSOLE

DATA PROCESSING
AND CONTROL
COMPUTATIONS

IMAGE SENSORS

PROCESSING
AND CONTROL
COMPUTATIONS

I I I

I I

IMAGE SENSORS S/S

0 CONTROL & DISPLAY CONSOU
0 SIDE LOOKING RADAR
0 TV CONTROLS & MONITORS
0 VIDEO TAPE RECORDER
0 VIEWFINDER CAMERA
0 TELFSCOA CAMERA

PANORAMIC CAMERA
0 FRAME CAMERAS

TELE-COMMUNICATIONS s/s
TELECOMMUNICATIONS
COMPUTATION

0 TELLCOMM. CONSOLE
0 RECElVEU/TFUINSMIl" 'E~

COMMUNICATIONS ANTENNA I
I ' J

I

I ATTITUDE
CONTROL
COMPUTATIONS GUIDANCE C

GUIDANCE C NAVIGATION S/S

0 GUIDANCE & NAV. CONSOLE
0 STABLE PLATFORM IMU

RANGINC RADAR
SCANNING TELESCOPE

0 SEXTANT

NAVIGATION
COMPUTATIONS I I

I-
Figure 2-3. Subsystems - Computer Interfaces

I" -

provision that each system be compatible with one another whenever operations so
require. The tele-communications subsystem has the following basic types of
functional requirements:

1.

2.

3.

4.

5.

6.

Voice - Two-way voice communication capability between the individual
crew members, between the three modules and between the spacecraft
and Earth should exist at all times.

Telemetry - The telemetry system is required to transmit measurements
related to the engineering status of the on-board systems, crew status
concerning psychological and physiological data and scientific experimen-
tation data.

Television - Television transmission is part of the spacecraft's
communication system and serves the dual purpose of monitoring
scientific data and furnishing public information.

Data Processing - The large number of engineering and status measure-
ments which must be processed, analyzed and transmitted, require on-
board data displays, data storage and data control.

Tracking - This function provides near Earth and Mars tracking capability
and aids in the recovery of the crew at the end of the mission.

Rendezvous - Upon completion of the Mars surface exploration, the MMM
and MEM must accomplish a rendezvous and docking maneuver which
requires howledge of range, range rate and bearing measurements to
the target vehicle.

2 . 5 . 2 . 4 Scientific Experimentation

A s shown in Figure 2-3 and Table 2-1, the measurement techniques for
scientific experimentation include microwave, infra-red, visible-optical, ultra-
violet, radiation, magnetic field, meteoroid and mass spectrometry. Table 2-1
shows the relationship between the scientific experimentation subsystem function,
the mission profile and the measurement techniques.

2 . 5 . 2 . 5 Reconnaissance

A s shown in Figure 2-3, the reconnaissance o r image sensor subsystem consists
of photographic and optical sensors. Employment of such sensors in the manned Mars
spacecraft is designed to make full use of man's capabilities. The crew members are
most effectively used in the collection, processing, handling, selection, and trans-
mission of imagery data.

The major subsystem elements include television, viewfinder camera, telescope
camera, panoramic camera and stereo high resolution frame cameras. The tele-
vision system is intended to serve a backup to the photographic cameras and to pro-
vide a real-time view of the Mar's surface. The viewfinder provides a visual
reference to the area which is mapped by the cameras. It also is used as a pointing
and tracking aid for the high resolution telescopic camera. The panoramic camera
provides a maximum of ground coverage with equal angular resolution at every scan

13

Table 2-1. Scientific Experimentation Subsystem Functions

~~

Trans-Mars

~ ~~

Arrlve and Depart
Mars Mars Orbit

M a n atmoephere and
surface absorption and
emission spectra

Mars atmosphere and
surface absorption and
emission spectra.

Airglow. Satellite
Twilight phenomena.

absorption and
emission

Mars atmospheric and
surface absorption and
emission spectra.
Airglow. Aurorae.
Twillght phenomena

Mars atmosphere

Aurorae. Spectra of
absorption spectra.

radiation belts.

Flux. directionality,
species, energy spec-
trum of trapped
radiation

Measurement Tecbnique

Microwave Spectroscopy Solar microwave
emission txum; thermal emissim

Mars absorption spec-

spectrum; albedo

Solar microwave
emission

Aborption spectnun of
Earth; thermal emis-
sion spectxum. Mic-
wave albedo

thermal emission
Earth absorption and

spectra. Infra-red
albedo

~~

Infra-Red Spectrorcopy Mars absorption and
thermal emission
spectra. Infra-red
albedo

Solar Infra-red
emission

Solar corona Infra-

Photosphere emission
red emission.

Visible-Optical Spectroscopy Earth absorption and
emisslon spectra,
albedo

Solar line spectra.
Spectra of selected
astronomical objects

Mars absorption and
emission spectra.
Albedo

Solar line spectra.
Spectra from corona.

Solar line spectra.
Spectra of selected
astronomical objects

Solar photosphere and
corona spectra

Ultra-Violet Spectroscopy Earth absorptlon and
thermal emission
spectra. Albedo

Mars absorption and

Albedo
emission spectra.

-L

Radiation Spectroscopy
energy spectrum of
Flux, directionality.

trapped radiaticm and
impinging radiation

species. energy spec-
Flux, directionality,

trum of radiation in
interplanetary space

Flux. directionality,
species. energy
spectmm in Mars
neighborhood

Flux, directionality.

trum of radiation in
species, energy spec-

interplanetary space
A?

Aemmagnetosphere ' Aeromagnetosphere Magnetic Field Local magnetic field Magnetic field in
space

Magnetic field in space

Meteoroids
of meteoroid8
Flux, directionality

of meteoroids
Flux, directionality

of meteoroids
Flux, directionality Flux, directionallty Flux, directionality

of meteoroids of meteoroids

Interplanetary gas

meteoroid composition
composition, Micro-

Interplanetary gas
composition, Micro-
meteoroid composition ~

Mans Spectrometry ! Mars upper atmosphere

i

".

angle so that complete planetary coverage can be obtained in a minimum time. TWO
frame cameras provide high-resolution stereo pictures of the planet's surface by
viewing the same surface area from two different aspects.

2.5.2.6 Life Support

The life support subsystem is one of the most critical subsystems in the MMM..
The necessity for maintaining a habitable environment for the whole 420 day mission
leads to exacting fail-safe operation, reliability and maintenance requirements.
Interface with the computer complex, if any, would be throclgh the instrumentation,
controls and displays required for the environmental control system. The implementa-
tion of a digital computer in life support appears to be limited to the monitoring of
direct indicating instrumentation as illustrated in Figure 2-3. However, it is possible
that use of the computer for life support control functions, rather than individual
controller electronic Itblack boxes, 11 will become feasible.

2.6 COMPUTATIONAL AND DATA PROCESSING FUNCTIONS

2.6.1 General
Three primary mission functions were described previously. These functions

require computer operations that fall into two general categories. The first is
command and control computation, which obviously relates to the command and control
function. The second group is mission data processing, which is primarily concerned
with the processing of the scientific experiments and exploration data but also includes
some limited processing of data from the life support system.

The type of computer operation required for command and control is decidedly
different from that employed for mission data processing. Consequently, any multi-
processing computer system should logically evolve from this natural separation of
computational tasks.

In order to investigate varying degrees of multiprocessing and also establish
their respective computational requirements, it is necessary to partition further the
two major computational and data processing categories. The subdivision of functions
through four levels is illustrated in Figure 2-4. The guide line for partitioning
functions is not limited simply to separation according to computational characteristics
but is also influenced by failure protection objectives. Such factors as the ability to
implement alternate modes of operation as well as the opportunity for maintenance
and repair, also have to be considered.

2.6.2 Computer Operations

In paragraph 2.8, relating to computer requirements, the individual functions
and their respective requirements are discussed in some detail. It is the intention
here to describe in a general manner the compltational and data processing tasks
that are required of the computer,

Processing for guidance, navigation and control is primarily computational in
nature, Input data from the various inertial and optical sensors are used to compute
location, orientation and directional acceleration of the spacecraft. When combined
with previously processed data from the same sources, the past and predicted flight
path and velocity of the vehicle is computed. This path is compared with the pre-
established desired trajectory to determine deviations and drift rates. Should an

15

Command and Control

Mission Data
Processing

Vehicle Guidance
and Control

3uidance and Navigation

Vehicle Attitude Control

Telecommunications Telecommunications I
‘Image Sensor Data
Processing

Experiment Data
Processing

4

Scientific Sensor Data
(Proc.

System Self-Test Operations

\System Performance Monitor

I
System Checkout

Navigation

Targeting
Required Velocity
Velocity-to-be Gained

Flight Sequencing
Steering
G&N Controls and Displays
Optical Sensors Orientation

Angular Rate Stabilization & Control

Translation Control

Thrust Vector Control

Attitude Controls and Displays

I Antenna Orientation

Data Processing

Communications Controls and Displays

Image Sensors Orientation & Sequencing

Image Sensors Data Correlation/AnalysL

Image Sensors Data Compression

Image Sensors Controls & Displays

Scientific Sensors Orientation etc

Scientific Sensors Data Correlation

Scientific Sensors Data Compression
Scientific Sensors Controls & Displays
Automatic Self-Test Operations

Self-Test Controls and Displays
Performance Data Compression
Monitor Controls and Displays

1
1,

Figure 2-4. Computational and Data Processing Functions

alteration of the predicted path be required, tht optimum method of achieving the
desired path, velocity components, and/or implementation of the spin up and de-spin
maneuver, is computed.

The computation task most characteristic of guidance, navigation and attitude
control processing is state (position and velocity) estimation based upon statistical
filtering. The process consists of using a statistical filter to optimally estimate the
components of the vehicle state vector from a sequence of measurements made by the
imperfect instruments on board the spacecraft.

In general, the estimation method works as follows:

In anticipation of the ith group of observations and the ith estimation cycle, the
computer integrates the equations of motion from the previous best estimate of the
state at the time of the ith estimate. The estimator K is determined by use of the
expected state and covariance matrix of estimation e r ro r corresponding to the time of
the ith estimation cycle. The expected values of the observables (space angles) a r e
computed. The observations are made from the spacecraft actual position and as
such conlxin the sensor error. The computed space angles are subtracted from the
observed angles. The residuals a r e operated upon by the estimator which produces an
optimal estimate of the deviation between the actual and expected spacecraft state.
This estimated deviation is added to the expected state to form a new, corrected set
of initial conditions for the next integration cycle. Finally, the covariance matrix of
estimation error is corrected to reflect the latest estimation.

Optimal filtering techniques may also be applied to attitude determination.
Because of long term gyro drift characteristics, devices such as sun sensors, horizon
sensors, and star t rackers are needed to provide long term attitude reference.
However, these instruments are not sufficiently accurate to provide the precision
attitude information needed. The recursive optimal filtering technique is one of
several methods available for utilizing the observables to update knowledge of vehicle
attitude. Others include least squares and partial correction. The latter two methods
require less computational complexity but at the expense of attainable accuracy,

An additional computation of special note is employed in the event that strapdown
inertial sensors are used for either primary or backup navigation. The strapdown
system uses body fixed gyro displacement signals in a high speed direction cosine
computation which effectively simulates the gimbal system in a stable platform inertial
mechanization.

Processing for tele-communications is concerned primarily with reduction of
the volumes of data received from numerous sources to the minimum quantity con-
sistent with maintaining the integrity of the information, This is accomplished through
a variety of data sampling and compaction techniques, Data processing aids in the.
communications task of determining transmission times and durations, power require-
ments, antenna boresight calculatione, and the information content of specific trans-
missions, This determination is based upon considerations of possible interference
from intervening bodies, predioted power and equipment utilization requirements.
These factors are of particular concern during the return to Earth phase of the mission
o r in the event of degradation in communication facilities.

17

Computer operation in support of the scientific experimentation and exploration
function consists primarily of data handling and data processing. Its objective is to
optimize the flow of information from the data gathering sensors to the crew and to
the communication subsystem. A large portion of the data to be processed is in the
form of imagery. It is likely that a sienificant saving in transmission time can be
realized, without loss of information O r increase in communications bandwidth, by
application of data compression techniques.

In addition to data compression techniques, transmission time can be reduced
by the avoidance of unnecessary overlap or duplication in the photographic imagery.
The computer can be used to control the image collection automatically thus relieving
the crew of the task of keeping track of picture overlap or duplication. With the aid
of navigational data, the computer schedules the operation of the cameras and insures
collection of precisely the right amount of duplicate imagery.

The processing associated with the scientific experiment sensors includes
sensor operation control, data compression and data analysis. The control functions
pertain to computer selection and sampling of inputs according to some programmable
criteria as in the following examples: (1) certain sensors or groups of sensors are
activated according to the mission phase, (2) the indications from an active sensor may
call for the use of an otherwise inactive sensor, (3) the selection of the different input
samples from the same sensor can vary during the course of the mission or according
to the status of the sensor, and (4) the sampling rate of each active sensor can be
varied according to such criteria as the amount of change in the data magnitude, the
relative change when compared to other sensor readings, the maximum allowable
data storage rate or data transmission rate, a priority basis or when the readings
pass through maximum and minimum conditions.

A s in the case of the image sensor data processing, data compression techniques
a re used by the computer to reduce the vast amounts of data being collected. In
addition to reducing the data through compression methods, the computer can conduct
an analysis of the contents of the data. This is normally done when the results of the
analysis is required for on-board operation and evaluation by the crew. An example
of this type of processing by the computer, is the comparison of a multicomponent
spectrum, as detected by an active sensor, to a pre-stored series of reference spectra.
Various curve fitting and correlation procedures can be used in order to establish the
best match and identify the elements in the sample. Correlation and matching between
sensors can also be used as an aid to automatic instrument calibration.

Performance monitoring, and in some cases the actual testing of subsystems, is
a significant data processing function. The objective is the immediate detection of
sub-standard performance on the part of any major element in each subsystem. The
monitoring task requires simply the sampling and recording of performance data for
purposes of display or telemetry. Some data compaction may be used in order to
reduce the data transmission load, Comparison of test point measurements against
pre-stored tolerance limits is perhaps the most prominent test under computer
control. However, a number of rate tests and cross-checks, may also be conducted,
all of which help in establishing the operating status of each subsystem.

A more sophisticated utilization of the computer takes place in the context of
an on-board checkout system. Here, the computer, operating in conjunction with
special purpose equipment, would control checkout operations such as: (1) selection
and control of function generators, (2) selection of stimulus and measurement points,

18

(3) selection and control of measurement devices, (4) timing and sequencing of the
stimuli and measurement signals, (5) comparison of observed with expected results,
(6) setting .or sensing of the state of the system under test, and (7) communication
with the crew.

2.7 MISSION-FUNCTION TIME LINE PROFILE

The Mars mission flight profile defined previously indicated a mission time to
Mars of 420 days. This imposes a duty cycle, for some on-board equipment, of over
10,000 hours for a flight initiating from Earth orbit. To this must be added ground
checkout time and operating time while in Earth orbit.

In order to provide a base for defining computer requirements as a function of
time and assess the computer reliability requirements, but without constraining the
computer configuration, a mission-computer function time line profile was generated.
The results are presented in Table 2-2. It can be seen from the profile that many of
the functions are expected to operate in excess of 10,000 mission hours. In the case
of guidance and navigation it appears that advantage can be taken of shut down periods.
During trans-Mars and trans-Earth coasting phases, which make up about 80 percent
of the total mission time, the guidance and navigation functions are active only for
short periods of time (for computing trajectory corrections) and computations are
made at widely spaced intervals of time. Most of the remaining functions are active
throughout the entire mission time, although for some it is not necessary that the
computing be done continuously.

2.8 DETAILED COMPUTATIONAL FUNCTIONS

In the previous sections a description of the system and a general discussion
of the computational functions was given. This section will discuss in more depth
the computational algorithms associated with the computer functions. The functions
will be described in four parts as previously identified, namely: (1) Vehicle Guidance
and Control (2) Telecommunications, (3) Experiment Data Processing, and (4) System
Checkout. These descriptions of the computational functions will provide the base
for defining the computer requirements and also provide insight into the types of
computations required.

2.8.1 Vehicle Guidance and Control

The Vehicle Guidance and Control (hereafter referred to BB Navigation and
Guidance or simply N&G) consists of 15 basic modes:

1.

2.

3.

4.

5.

6.

7.

Atmospheric Ascent

Earth Orbital Coast

Trans Mars Injection

Trans Mars Coast

Trajectory Correction

spin UP

Trans Mars Spin Cruise
19

Table 2-2. Mission-Function Time Line Profile

r 1 TRANSMARS (120 DAYS) TRANSEARTH (260 DAYS MARS AREA (40 DAYS)

h3
0

TOTAL RUNNING I o I 2 TIME(HRS) 1 *
N

i) m I

N

m 2

I r r "DMPUTER FUNCTIONS 11- -L - * * *
"-

GUIDANCE &
NAVIGATION 1 I * * * I * * * I 1 * * * :t * . I * -

* * -' ' -
* - -
* *

- I * *

VEHICLE
ATTITUDE CONTROL I' I * * I *

I
* ! * * ~ l * ' * * , * / * I * * I * *

* k *
"

- ' - . * 1
I

"-
- - *

- l * I - / * * I - * ' * ; * I
i - * * I - I * *

I . * * 1 - - - IMAGE SENSOR
DATA PROCESSIN2

SCIENTIFIC SENSOR
DATA PROCESSING

* * I -
" +"- "p"
* * I * , * * * * ' , * I * * -+

* / * *) *
SUBSYSTEM SELF-TEST
OPERATIONS / * I -
SYSTEM RRFORMANCE
MONITOR I * I * "I

8.

9.

10.

11.

12.

13.

14.

15.

De Spin

Mars Approach Correction

Aerobraking

Mars Orbit Injection

Mars Orbital Coast

Trans Earth Injection

Earth Approach Correction

Earth Re-entry

This is not intended to imply that there are 15 phases to the mission since some
of the basic modes will be entered into several times (e. g. spin up and de spin for
trajectory corrections on both trans Mars and trans Earth portions of the mission).
A description of the N&G functions for each mode will be given below. These modes
will then be translated into computer requirements per mission phase. It should be
noted that references 5, 12, and 13 were used throughout paragraph 2.8.1.
2.8.1.1 Atmospheric Ascent

The atmosoheric ascent O r Ilboostlf will be primarilv controlled bv the booster
guidance system: However, it is possible that the spacecraft computer will have
access to the information from the booster guidance instrumentation] in this case it is
likely the spacecraft computer will compute position and velocity during boost.

2.8.1.1.1 Computations

The IMU Mechanization function requires the following functions to be
implemented:

1. Process Accelerometer Outputs

2. Navigation Computation:

a. Compute Navigation Reference

b. Extrapolate Gravity Velocity

Detailed mechanization equations will not be given here for these functions.
These detailed equations were given in reference 16, the first quarterly report of
the study. The Bame holds true for the remainder of the N&G functional description;
appropriate comments will be made regarding the equations where necessary o r
they will be included where they hold particular significance to computer mechanization
or complexity.

21

2.8.1.2 Earth Orbital Coast

During this mode of navigation the basic equation describing the motion of the
vehicle is given by

- d " - u -

dt r
2 r + - r = Z 3

Where 'F 'is 4_he vector position of the vehicle, u is the gravitational constant of the
planet, and a is the vector acceleration which prevents the motion of the vehicle from
being precisely a conic with the planet at the focus. Basically the motion of the vehicle
is computed using a method such as Encke's. Periodically, due to accumulated errors,
orbit determination is performed to update the state of the vehicle. The method of
determining an orbit described here is that of using star-landmark tracking. The
star trackers are used to provide a precise attitude reference while a landmark tracker
is used to provide data for updating the state vector of the vehicle. Therefore, the
functions a re broken down into four sections: (1) Attitude Reference, (2) Landmark
Tracker Operation, (3) Orbit Determination, and (4) Navigation Computation.

2.8.1.2.1 Computations - Attitude Reference

1. Star Selection Routine - This routine outputs the Line of Sight to two stars in
inertial coordinates. The stars are selected which will be in the telescopes
field of view and checks are made to see that a chosen s t a r is not in a
prescribed cone about the sun, moon, and earth.

2. Star Tracker Pointing

3. Tracker Acquisition and Tracking - The tracker will require a scan program
to be superimposed on the commanded angles. The scan dither program may
appear as:

A"
1 2 3 P A 1 2 3 p.. 8 : commanded angles

Time of star presence must be accepted by the computer to interpolate
the star angles.

4. Kalman Filter Star Data -

T T -1
Bn = Pn Mn cMn Pn Mn + Cn)

22

Xn = Bn AY A

r!

i= F*

Where

Pn : 11 x 11 covariance matrix of the estimation e r ro r s Xn
evaluated at time tn

I : 11 x 11 Identity Matrix

Bn : 11 x 2 Filter Matrix

Mn : 2 x 11 Output Matrix

K : 11 x 11 Constant Matrix (gyrodrifts, biases, etc.)

Xn : 11 x 1 Optimum Estimate of Errors
A

AYn : 2 x 1 Pointing Residuals

@: 11 x 11 Transition Matrix for Propagation of the Covariance
Matrix

F : 11 X 11 System Matrix

Cn : 2 X 2 Covariance of White Observation Noise

5. Compute Body fo Inertial Transformation from Gimbal Angles

6. Compute Locally Level to Inertial Matrix

7. Compute Locally Level to Body Matrix

8. Generate Attitude Control Signal

2.8.1.2.2 Landmark Tracker Operation

1. Landmark Tracker Pointing:

a. Compute Initial Estimate of Landmark Position

b. Correct Tracker Gimbal Angles

c. Compute Angular Rates and Incremental Conditions

d. Rapid Updating of the Gimbal Angles

23

2. Landmark Tracker Data Processing

a. Pattern Correlation and Tracking - This function requires the computer to
store the present and previous digital scan of a landmark and shift the two
scans relative to each other so as to obtain a best match; the shift between
scans is then used to compute the observational residual.

b. Computation of the Observational Residuals

c. Computation of Expected Variance

2.8.1.2. 3 Orbit Determination Computation

1.

2.

3.

4.

5.

6.

Prefilter Observational Residuals - Observational residuals may be obtained
at a rate different from that used to perform the orbit determination
computation. Therefore, a prefiltering such as a least squares method may
employed between iterations.

Computation of the Output Matrix

Computation of the System Description Matrix

Initial Estimates of Covariance Matrices

Optimum Filter Computations

similar definitions as given in the attitude reference section apply
except the matrices involved are reduced to 9 x 9 and 2 x 9.

Propagation of Covariance Using the Transition Matrix

& = F@

where a fourth order Runne-Kutta integration is used.

24

7. State Vector Correction

A5 = b - A- m

where :
-
At : correction to be applied to the state vector

b : optimum filter computed in 5 above

2.8.1.2. 4 Navigation Computations

1.

2.

3.

4.

5.

6.

Rectify Osculating Orbit

Update Osculating Orbit - The difference in the eccentric anamoly, AE, is
computed in an iterative manner.

Compute Perturbations and Evaluate Derivatives

Update for Runge-Kutta Integration

Update State Vector Estimate

Correct the State Vector

2.8.1.3 Trans Mars Injection

During this mode powered flight is again encountered and the navigation functions
of 2.8.1.1, Atmospheric Ascent, are applicable. In addition, the computer is required
to compute the required velocity to achieve the desired trajectory and the velocity-to-
be-gained to implement steering during the maneuver.

25

2.8.1.3.1 Process Accelerometer Outputs

2. 8.1.3.2 Navigation Computation

2.8.1.3.3 Required Velocity Computation

The required velocity for trans mars injection may be defined as that velocity,
at the present position, that will place the vehicle on a conic passing through a specified
time.

2. 8.1.3.4 Velocity-to-be-Gained Steering

The steering mechanization is a combination of two methods (a) alignment of the
thrust vector, ZT, with thevelocity-to-be-gained, V vector akd @) alignment of the
thxst vector to cause the time rate of change of the s' G vector, VG, to be parallel
to VG and oppositely directed. A scaler mixing parameter, V, of these two methods is
chosen to maximize fuel economy during the maneuver.

2.8.1.4 Trans Mars Coast

This mode of navigation consists of making sightings on planetary bodies to
determine position and velocity and monitoring the velocity-to-be-gained for a trajec-
tory correction.

2.8.1.4.1 Attitude Reference

2.8.1.4.2 Navigation Computation

Time did not permit defining a suitable mechanization for this function.

2.8.1.4.3 Velocity-to-be-Gained (Monitor)

2.8.1.5 Trajectory Correction

The basic functions required during this navigation mode are the powered flight
functions of 2.8.1.1, the required velocity to be gained as described in section 2.8.1.4,
and the steering function.

2.8.1.5.1 Process Accelerometer Outputs

2.8.1.5.2 Navigation Computation

2.8.1.5.3 Velocity-to-be-Gained

(Same a8 2.8.1. 4.3 Velocity-to-be-Gained (Monitor) except whendvexceed some
value and thrusting is initiated.)

2.8.1.5.4 Velocity-to-be-Gained Steering

26

2.8.1.6 Spin Up

During this mode the functions required are a determination of the angular
velocity to be gained and steering commands to achieve the desired angular velocity.
Time has not permitted defining a representative computer mechanization for these
functions.

2.8.1.7 Trans Mars Spin Cruise

The functions required during this mode are similar to those required during the
coast mode described in 2. 8.1.4 (Attitude Reference, Navigation Computation,
Velocity-to-be-Gained Monitor), in addition, .the angular velocity to be gained will
need to be monitored.

2.8.1.8 Despin

This mode is identical to 2.8.1.6 (Spin Up) with the exception that the desired
angular velocity is 0.

2.8.1.9 Mars Approach Correction
-

The functions for this mode are the same as those required in 2.8.1.5 (Trajec-
tory Correction) except that a different mechanization is used for the velocity to be
gained computation (variable time of arrival guidance instead of fixed time of arrival
guidance).

2.8.1.9.1 Process Accelerometer Outputs

2. 8.1.9.2 Navigation Computation

2.8.1.9.3 Velocity to be Gained

-
iD = unit [(1 - cos e)2 T + s i n e (A - cos e + T x i) I

rP r n P

2.8.1.9.4 Velocity to be Gained Steering

2.8.1.10 Aerobraking

Many of the functions required during this mode are expected to be similar to
those of 2.8.1.15 (Earth Reentry). However, some simplification exists since it is
not required to steer the vehicle to a desired landing site. The detailed equations for

27

the required functions were obtained from reference 13. A brief description of the
required functions follows:

Out of Atmosphere Flight Predictor.

Predicts flight conditions at top of atmosphere and range to top of
atmosphere.

In-Atmosphere Flight Predictor.

Flight prediction by integration of equations of motion with constraint and
damping loops.

Coefficient Setup and Extrapolator.

Linear extrapolation of predicted information with energy and time.

Non-Dimensional Constraint and Damping Computation.

In-Atmosphere Command Generation.

2.8.1.11 Mars Orbit Injection

Navigation and guidance functions during this mode are similar to those required
in 2.8.1.3 (Trans Mars Injection) with the exception of the required velocity
mechanization.

2.8.1.11.1 Process Accelerometer Inputs

2.8.1.11.2 Navigation Computation

(Same except gravitational calculations are on Mars)

2.8.1.11.3 Required Velocity Computation

2.8.1.11.4 Steering

2.8.1.12 Mars Orbital Coast

This mode will require the same functions as in 2.8.1.2 (Earth Orbital Coast).
The method of orbit determination using star-unknown landmarks may be used to
advantage here,

2.8.1.13 Trans Earth Injection

The functions of this mode a re quite similar t o those of 2.8.1.3 (Trans Mars
Injection) with the exception of the required velocity mechanization.

2.8.1.13.1 Process Accelerometer Inputs

2.8.1.13.2 Navigation Computation

28

2. 8.1.13.3 Required Velocity Computation

2.8.1.13.4 Steering

2.8.1. i4 Earth Approach Correction
~

The functions in this mode are similar to those of 2.8.1.9 (Mars Approach
Correction) with the exception of the required velocity computation (additional computa-
tions required due to an entry angle and landing site requirements).

2.8.1.14.1 Process Accelerometer Outputs

2.8.1.14.2 Navigation Computation

2.8.1.14.3 Velocity to be Gained

2. 8.1.14.4 Velocity to be Gained Steering

2.8.1.15 Earth Re-Entry

The mechanization of this
good description and discussion

mode is quite complex and Reference 13 provides a
of these equations. Briefly these functions are given -

below:

1.

2.

3.

4.

5.

6 .

7.

Out of Atmosphere Flight Predictor; Prediction of flight conditions at top of
atmosphere and range to top of atmosphere

In Atmosphere Flight Predictor; Flight prediction by integration of equations
of motion with constraint and damping loops

Coefficient Setup and Extrapolator; Linear extrapolation of predicted
information with energy and time

Spherical Range Computation; Transformation of destination and target
location to energy management coordinates

Nondimensional Ground Area Attainable and Target Overflight Ground Area
Attainable prediction

Nondimensional Constraint and Damping Computations

In Atmosphere Command Generation

2. 8.2 Telecommunications Requirements
~- ~ " .

This function is concerned with the data transmission function primarily. The
information obtainable on this function was somewhat lacking and some interpolation
had to be applied to define the requirements.

29

2. 8 .2 .1 Transmission Instrumentation Pointing Commands

The functions involved here are computing desired Line of Sights, various
coordinate transformations, computing pointing angles, and commands p, a . The
equations a r e quite similar to those involved in paragraph 2. 8 .1 .2 , the attitude
reference mechanization of the orbital coast phase.

2 . 8 . 2 . 2 Command Processing

Communication of commands from the ground will require the computer to
accept and store after proper verification a number of commands. These commands
may be in realtime or stored time. Stored time commands require a command storage
program which is cycled through periodically to detect commands to be executed.
Once a command is to be executed, the computer outputs an execute signal with the
appropriate address for destination purposes.

2. 8 . 2 . 3 Data Formatting

The allocation of this function is difficult to define at this time. There will
undoubtedly be requirements for formatting and coding data prior to transmission.
However, some coding of data will be taking place in functions described in other
sections of this report (such as the data compression in paragraph 2.8 .3) . At certain
times it may be required to process bulk data prior to transmission. Some of the
algorithms described in the data compression section will be applicable here.

2 . 8 . 3 Scientific Experiment Computational Requirements

The description of computational requirements for the scientific experiments
shall be given in three parts: (a) the scientific experiment instrumentation, @) the
computational algorithms to be applied to the scientific experiments, and (c) the
resultant computer requirements.

2 . 8 . 3 . 1 Scientific Experiment Instrumentation

An investigation of References 1 and 14 provided what may be considered as
representative instrumentation for achievement of the scientific experiments. The
following is a list of the basic classes of experiments to be performed:

1. Investigation of Interplanetary Bodies: Comets and asteroids in close
approach with the vehicle will be studied.

2. Analysis of the Interplanetary Medium: Various environmental properties
need to be monitored such as: neutral gas, charged particles, neutrons,
electromagnetic radiation, meteroid, magnetic fields, etc.

3. Observations of Solar Phenomena: Various observations will be made to
determine properties of the photosphere, chromosphere, corona and
magnetic moment and fields.

4. Analysis of the Aeromagnetosphere: Measurements will be made to deter-
mine a magnetic field map and magnetically trapped energetic charged
particle belts.

30

I

5.

6.

7.

Analysis of the Topography and Surface Composition of Mars: Measure-
ments will be made to determine the amount of energy absorbed and
reflected by the planet in different regions of the electro-magnetic spectrum,
the composition of various areas of the plant, the existence and distribution
of plant life and the topography of the planet.

Determination of the Periods and Gravitational Properties of Mars: The
gravitational field and rotation of the planet will be determined and various
properties of the satellites of the planet will be determined.

Analysis of the Martian Atmospheric Structure and Composition: Measure-
ments must be made to determine the molecular and isotopic density
distributions, the atmospheric density, the pressure, the temperature, etc.

The first four types of experiments may be considered as the cruise or inter-
planetary experiments while the last three are Mars orbital or Mars vicinity experi-
ments. To achieve these desired scientific objectives the following instrumentation
requiring o r having the possibility of on-board data processing may be identified.

2.8.3.1.1 Interplanetary

1. 3-Axis Magnetometer

The output of the magnetometer will be three channels representing flux
intensity. Sampling requirements are expected to be at a rate of 12 channels/
minute with a resultant information rate of 120 bits/minute. On-board
data processing may be utilized here to compress the data prior to trans-
mission by an encoding or curve fitting approach. (These will be covered
in Section 2.8.3.2.)

2. 6-Axis Hi Energy Spectrometer, 3-Axis Moderate Energy Spectrometer,
Proton Plasma Spectrometer, Electron Plasma Spectrometer, X-Ray and
UV Photometer, Ion Chamber

The output of these instruments will constitute approximately 191 channels
with a total sampling rate of 224 channels/minute with a resultant informa-
tion rate of 1120 bits/minute. On-board data processing can be utilized with
this instrumentation to compress the data prior to transmission by utilizing
encoding, curve fitting, and statistical methods.

3. Micrometeoroid Spectrometer

Three channels of information will be received from this instrument; the
sampling rate is expected to be quite low (3 channels/hour total) resulting
in an information rate of 30 bitshour. On-board data processing may be
utilized to compute the mass from the momentum-velocity ratio and the
data may be readily compressed using statistical methods.

4. Infrared Telescope and Spectrometer, Microwave Radiometer, Visible
Wavelength Optics and Telescope

This instrumentation is primarily required during the Mars orbital phase.
However, it will probably be used during the interplanetary cruise to

31

measure such properties a8 sdar microwave emission, solar infrared
emission, spectra of selected astronomical objects, etc. The rates of
taking meaclurements are expected to be considerably lower than when the
instrumentation is used in the Mars orbit. It has been assumed that the
average information rate is approximately 800 bits/sec for purposes of
assigning requirements. Generally, the data processor may be utilized
here to compress the data prior to transmission.

5. General Human Performance Measurement

This instrument is expected to be used periodically, for example, four
hours/every four days. The data rates are expected to be 75 bits/minute
input to the data processor and 100 bits/minute output to the instrument
while the experiment is being conducted. The data processors will be
utilized to activate various lights and output numerics on the display panel
and to reduce the data obtained from the panel responses.

2.8.3.1.2 Mars Orbital

The discussion above for interplanetary instrumentation will also apply for the
Mars orbital phase with the exception of the instrumentation identified in (4). The
information rate is expected to be considerably higher in this phase for these instru-
ments. It may be reasonable to assume that the full data transmission capability of
the spacecraft will be utilized in this phase to make as many multiband spectral
observations as possible. Predicted capabilities for the transmission rate for
1980 time period missions appears to be approximately (conservatively) 20,000 bits/
second. The data processor may be utilized to compress the data obtained from the
observations; a conservative estimate of data compression that will be obtained of
2 to 1 will be assumed. If it is assumed that the transmission consists of 80% assigned
to the observations, this results in 16,000 bits/second. Application of data compres-
sion results in a capability of handling 32,000 bits/second from this instrumentation.
Of course, a higher rate may be established if buffering of some form is used.
However, this figure may be considered as a real time limit. The number of bits
per observation per frame will depend on the region of the spectrum (visible, IR, etc.)
that the observation is made in and properties of the optics (resolution, field of view,
etc.). It will be assumed here that one frame will consist of approximately 106 bits
(400 x 400 lines, 6 bit coding to a cell); this results in a maximum processing rate
of one frame every 30 seconds (this may be considered a maximum average rate i f
buffering is available).

Data processing will be performed on the observation data to achieve compres-
sion prior to transmission; the method of curve fitting by computing coefficients of
orthogonal polynomial series may be considered as representative of a compaction
algorithm.

In addition to processing data from the on-board instrumentation, there a r e
expected to be a number of remote sources of information (probes, excursion module)
which will require data processing of experimentation information received via data
links. These remote sources are:

1. Orbital Probe

This probe will be equipped with instrumentation identical to that listed
under items 1, 2 and 3 of the interplanetary instrumentation. The

32

information rate for this environmental instrumentation is expected
to be of the same magnitude.

2. Landing Probe

One or more of these probes may be expected to be launched prior to
launching the excursion module. Typical instrumentation for such a probe
may include:

Gas densitometer

Barograph

Thermistor and Shield

Radar Altimeter

Gas Chromatograph (or mass spectrometer)

Hi-Energy Partical Detector

Flux-Gate Magnetometer

X-Ray and UV Photometer (5 bands)

Sound Velocity Detector

Ionospheric Charge Density Probe

The data from these instruments will be transmitted to the mission module.
This data may be expected to consist of 31 channels at a sampling rate of
151 channels/sec total. The resultant total information rate is 1356 bits/
sec. Data processing will be performed on the data for compression prior
to transmission to earth.

3. Mars Excursion Module

A listing of some of the possible instrumentation on board the excursion
module is given below; this list is by no means complete since numerous
experiments currently undefined may be desired on the surface of Mars.

Barograph

Soil Penetrability Probe

Thermistors (air and ground)

Flux-gate Magnetometer

Soil Density Meter

Anemometer

33

I

Soil Chemical Composition

Hi-Energy Particle Spectrometer

Gamma Ray Scintillator

Neutron Detector

Soil Electrical Conductivity

Sound Velocity and Seismic Microphone

Seismic Detector

Radiometer, Sweep Frequency

Insolation Spectrometer

TV Subsystem

Data from these instruments will be transmitted to the mission module
where data processing will compact the data prior to transmission to earth.
In addition to achieving data compaction by encoding and curve fitting
methods, the data may be actually processed to achieve the end results of
the experiment. An example of such an end result is computing the chemical
constituents of a soil sample based on the data from the soil composition
analyzer subsystem.

2.8.3.2 Computational Algorithms

This section contains a discussion of some of the potential algorithms that may
be implemented for processing the data to achieve data compression and a description
of other computation functions required. Data compression or data reduction may be
grouped into three classes for this application: (1) compression by an encoding o r
curve fitting method whereby the data may be reconstructed after compression,
(2) compression by computing some statistical properites of the data (such as mean
and variance) and transmitting only the statistical properties. This method is useful
when the original data need not be reconstructed. (3) compression by computing the
desired or end objective of the experiment on-board instead of on the ground. These
three general classes will be discussed in more detail below:

2.8.3.2.1 Encoding and Curve Fitting Data Compression

1. Debiasing - If the signal is expected to have a small dynamic range with
a large magnitude, it may be advantageous to subtract a bias value (for
example, the RMS value) from each sample and transmit the deviation
from this bias value. An example of the applicability is in the monitoring
of a power supply voltage; the value is expected to have small variations
abcut some RMS value say 28 volts. It will require a fewer number of
bits to represent the signal if 28 is subtracted from each sample.

34

Computation: Yn - K = Tn
Y

(Where Yn is the actual value of the n-th sample. Ky is the bias constant
for the signal Y. Tn is the transmitted value for the sample.)

2. Difference Coding - Instead of transmitting the value of the sample, the
difference between successive samples may be transmitted. This trans-
mission of first order differences is quite similar in applicability as
debiasing; if the dynamic range between samples is small or the signal
is relatively "smooth, I t a smaller number of bits will be required for
representation. An important property of the above two methods is that
they introduce no e r r o r due to compression.

Computation: Yn - Yn-l Tn - -

3. Zero Order Polynomial Predictor - The Zero Order Polynomial Predictor
(ZOPP) method, commonly known as the floating aperture method, may be
classified as curve fitting as may be all the predictor and interpolator
methods. Basically the ZOPP transmits only the differences between
samples if the differences exceed some preset value (this preset value is
equal to half the aperture width, A). If no value of the difference is
transmitted at time t, the value of the sampled signal is assumed to be
the same as at t-1.

Computation: i f I Yn - Yn-l 1 >A/2 (Transmit y n

4. Zero Order Polynomial Interpolator - The Zero Order Polynomial Inter-
polator (ZOPI) is very similar to the ZOPP with t h e difference being that
instead of predicting succeeding values from past values, successive
data points a r e examined and a horizontal line fitted to as many consecutive
points as possible without creating errors greater than that permitted.
Rather than attempting to describe the computations mathematically, a
flow chart is given below showing the computations required for a given
sample of the signal:

Y. is the current sample

Ku is the Upper Bound

K is the Lower Bound

1

1

A is the aperture width

Yt is the transmitted difference (difference between horizontal
line approximations)

35

5. First Order Polynomial Predictor - With this farm of prediction, two data
values a re used to predict succeeding values. If the prediction is within
the error tolerance, no new data is transmitted; new information is trans-
mitted only when examination of successive data points reveals one which
does not lie within the predicted region. For the first order polynomial
process, straight lines are involved and the process has the form:

Where: Yt is the predicted
A

(Case A)

value of y at time t

Yt is the actual value of y at time t

is the information at time t

36

N is a number of time intervals = (t + n) - (t + k)

k designates the time interval at which the last transmission
of information occurred

A is the magnitude of the permissible maximum e r r o r

The difference between Case A and Case B is as follows: With Case A,
when it is necessary to send more information to define a new line, the last
predicted point becomes a point of the new line. With Case B, two new
differences are transmitted, one giving the difference of the first point
of the new line from the last predicted point on the old line, and the second
difference giving the difference between the second point on the now line
and the first point on the new line.

6. First Order Polynomial Interpolator - The First Order Polynomial Inter-
polator (FOPI) is an extension of the ZOPI technique. First order polyno-
mials (straight lines) a r e fitted to as many succeeding data points as
possible without exceeding a specified error. When the specified e r r o r
is exceeded, information sufficient to define a line which fits the previous
data points is transmitted; the examined data point becomes the first of a
new set of points. Successive data points a r e added to it until the specified
e r ro r is exceeded. To specify the approximating line, the following
information is sent:

A

Yt+n-l - yt+n

and N where these terms have the same meaning as used in the discussion
of the FOPP. The first piece of information sent defines the starting point
of the line, the second its slope and the number of intervals, N, the length
of the line.

7. Orthogonal Polynomial Series - Orthogonal function series may be employed
for data compression by fitting one series to each successive time interval
of sensor data, and then telemetering the resultant series coefficients
rather than the sensor data itself. As an example, a four term trigonometric
Fourier Series could be fitted to each successive interval of 20 sampled
data values from a sensor, say a video scan, resulting in a possible
compression ratio of 5 to 1. Orthogonal polynomial compactors are well
suited to applications where the sensor is being sufficiently utilized so
that its output data has an information density too high to be reasonably
compacted by neighborhood commonality compression approaches.

This approach does notrequire a priori assumption or restriction on the
structure of the data other than that it be continuous. Polynomials are
chosen for orthogonal expansion basis functions f i (x) because of their
properties of providing minimal mean square weighted e r r o r power aeries
approximation, smoothing, and interpolation series for sampled data
environments.

37

An 11 term compactor series of polynomials fi (x), over an interval T of
sensor data y (tj, o 5 t d T, is given by:

where

a. 1 1 = k . j r w(2 &) fi(2 A) Y (t) dt

Here w (2 A) is a compaction e r r o r weighting function and the ki a r e normal-

izing constants. In order to evaluate the coefficient integrals, ai, on board,
a numerical integration is made, replacing the equation by:

N

j=O
a. 1 Y Z d.. Y(j 5)

1J

where the dij are the set of constant multipliers stored on board the space-
craft. This set of constants, dij, a r e computed on the ground by methods
which will not be gone into here. After receipt of the transmitted coefficient,
ai, the compacted approximation Ya(t) to the original data can be recreated
by the series given above.

2.8.3.2.2 Compression by Statistical Reduction

Often only the statistical nature of certain measurement data is of interest as in
the determination of ion density o r distribution of meteorite impacts. The data
compression in this case results in the determination of certain statistical parameters
such as the mean or variance, or certain points on a probability distribution curve.

1. Quantiles Representation

Further discussion beyond that given here on this topic may be found in
Reference 15. A basic assumption involved in this method is that the time
history of the measurement data is of no importance and that a probability
density curve is what is primarily desired as a result of the experiment.
Representation by quantiles is an effective means of compressing data under
these assumptions. Basically, this method may be described as follows:
a probability density function (x) is approximated by computing quantiles
which represent a cumulative distribution function of the variable (x). A
probability density function is shown in Figure 2-5. The variable, x, may
typically be the number of particle counts per second and the curve for
many experiments may have the normal distribution shown in Figure 2-5.
If the particle counts are accumulated for a given period of time, say
1000 seconds, then the cumulative distribution function F(x), shown in
Figure 2-6, may be approximated by the quantiles Q(n) where these quantiles
represent the number of times (or frequency) particle counts up to some
value, X,, were received in the given time period, 1000 seconds. The
value and number of the quantiles to be used is set and then the particle

38

X

Figure 2- 5. Probability Density Function

Xi x2 - . . -
xN

A

Figure 2-6. Cumulative Distribution Function

counts are accumulated for the time period. At the end of the time period
the number of the particle counts of a given value received (starting from 0
and working towards the maximum N) are counted until the first quantile is
reached, the value of X, resulting in this quantile is stored, and the process
is continued until the desired number of quantiles are computed. It has
been shown that four quantiles may be sufficient for a statistical
representation.

Computation:

During Fixed Sampling Period:

Accept input data X
Update frequency of data X

At End of Sampling Period:

Add frequency of X sequentially starting from x = 0.
If the cumulative frequency exceeds Q1 store the value of X
and use the next quantile Q2.

39

Continue until all quantiles are computed,
Output the values of Q and associated values of X.

2. Representation by Moments

In addition to the statistical method described above, another statistical
approach is to compute the moments directly. In general the pth moment
is given by:

The second moment (P = 2) is called the variance and the first moment the
mean. The mean is given by:

2.8.3.2.3 Compression by Complete Data Reduction

This method of data compression differs from the above two (2. 8.3.2.1
and 2. 8.3.2.2) in that it is not specified by a unique mathematical algorithm and its
approach is to compute the desired end objective of an experiment on-board, based
on the raw data from the sensors. Obviously the computational algorithms depend
on the particular experiments and two applications of this approach will be given
he re :

1. Experiment: Composition Analysis

An experiment to analyze a soil sample may consist of bombarding the
sample with alpha particles and measuring the returned scattered energy.
This scattered energy spectrum may be analyzed to yield the elemental
composition of the sample. A typical result from such an experiment is
shown in Figure 2-7. This sample consisting of potassium, carbon, and
oxygen may be completely analyzed on board rather than transmitting the
scattered energy data to the ground. The procedure used may be of a
least squares fit to reference curves stored on board, computing the
slopes o r breakpoints on the curves and determining the elements, o r many
other possible curve fitting methods. Some additional discussion beyond
that here may be found in reference 10 on this experiment.

2. Experiment: Human Performance

The objective of this experiment is to measure samples of crew member
performance on a set of tasks to detect any changes in his environment.
The results of this experimentation will be compared with biomedical data
to see what correlation exists and provide an evaluation of the effects of
environment onhuman capability. A typical performance test unit may
consist of a panel with colored warning lights and response buttons and
arithmetic indicators. The experiment data may consist of responses to

40

6oC

B
$. 300

w

100

0

1 -

l -

-
L -
30

-. . .

-

-

* . .

"f CARBON

. . -
T

Oi,,,

. t " .- 7

100 200 250

CHANNEL NO.

Figure 2- 7. K2 CO3 Alpha Spectrum

warning lights and results from arithmetic manipulations. Some of this
data may be reduced by the computer on board by computing the desired
end results. A set of computations for reduction of such data may be
described by:

a. Reduce data from warning light tests:

(1) Compute mean response time for each of 10 lights

(5 red, 5 green)

n

where $ is the ith measured response time of the j

light. j : 1 to 10, n : 60

th
5

(2) Compute grand mean for red light

41

(3) Compute grand mean for green lights

10

tr GMG J=6 m
5

(4) Search through red response times and determine minimum.

(5) Search through red response times and determine maximum.

(6) Search through green response times and determine minimum.

(7) Search through green response times and determine maximum.

(8) Compute mean response time for red/5 minute period

50

m k=l 'k
tR = z tR r

50

where 10 measurements are assumed for each of the 5 red lights
during a 5 minute period. If the test lasts 30 minutes, six of
these response times need to be calculated.

(9) Compute mean response time for green/5 minute period

b. Reduce data from arithmetic tests:

(1) Compute percent correct/total period.

(2) Compute percent correct/each 5 minute period.

(3) Compute mean time to solve for total period.

30

t i=l
tm = z ti

30

(4) Compute mean time to solve for each 5 minute period.

10
tm = x ti

5 i=l
10

(6) Compute minimum and maximum response time of total period.

(6) Corrpute minimum and maximum response time of each 6 minute
period.

42

2.8.3.2.4 Sensor Sequencing and Scheduling

The scientific instrumentation consists of a variety of sensors as described
previously (2.8.3.1). During any one phase such as the interplanetary cruise, it may
be desirable to implement various portions of experiments based on other events o r
conditions, some of which may be predetermined and others adaptive. Thus, as con-
ditions such as distances from planetary bodies change, scientific phenomena change
such as solar activity. The instrumentation may be utilized in a manner to collect
the optimum amount of information.

2.8.3.2.5 Sensor Pointing and Control

The computer requirements will be broken down to two distinct phases for
processing of information from the scientific instrumentation, interplanetary and
Mars Orbital, since these are the two major differences in terms of experiment
utilization.

These requirements are given in Tables 2-3 and 2-4. Storage, speed, and word
length a r e given for each of the computational functions presented in section 2.8.3.2.
The numerical values were obtained from a trial programming procedure using the
data presented in section 2.8.3.2 and assumptions where necessary.

2.8.4 System Checkout

This function consists of various performance monitoring and self-test
operations. In general, it is desired to achieve (a) malfunction detection, and
@) malfunction isolation. These items a r e achieved by two basic programs in the
computer: (a) the status evaluation program, and (b) the status utilization program.

The status evaluation program is entered into firet and three basic types of
tests are performed on parameters monitored: (1) range evaluation (tolerance test),
(2) rate evaluation, and (3) failure prediction; each parameter may be subject to one
or more of these tests. Upon detection of a parameter out of tolerance in any test, the
crew is advised of the result on the display panel. Then the out of tolerance condition
results in an exit to a status utilization program. This program may read in additional
parameters and perform further tests on these parameters in an attempt to isolate
the malfunction. Upon completion of the utilization program the evaluation program is
returned to complete the remainder of the monitoring program.

Some of the status monitoring data may also be transmitted to the ground. In
this case, data compression (as described in the scientific instrumentation section)
may be applied to reduce the transmission requirements.

43

I .

A flow chart is shown in Figure. 2- 8 describing the status evaluation functions.
The status evaluation routine in this drawing may be considered a s the isolation
routines.

Table 2-3. Interplanetary Experiment Computer Requirements

Function

1.

a.

b.

C.

d.

e.

f.

g.

h.

i.

j.

2.

3.

Data Compression

Debiasing

Difference Coding

Zero Order Poly-
nomial Predictor

Zero Order Poly-
nomial Inter-
polator

First Order Poly-
nomial Predictor

First Order Poly-
nomial Inter-
polator

Orthogonal Poly-
nomial Coef-
ficients

Quantiles
Computation

Moment Com-
putation

Data Reduction

Sensor Sequencing
and Scheduling

Sensor Pointing
and Control

Storage
(Words)

Jnstr. Const. Var.

17

19

20

110

73

175

324

76

57

250

750

600

2

0

21

19

19

19

24

30 0

5

5

125

50

4

100

75

100

100

100

300

380

150

700

150

26

Speed
(Operations/Sec)

Short Long

0.5

7

7.5

41

27

64

6361

33

30

20

200

1000

-"
"-

"_

"_

0.5

0.5

522

-"

1

1

2

400

Word
Length
(Bits)

10

10

10

10

10

10

12

10

10

14

16

16

44

Table 2-4. Mars Orbital Experiment Computer Requirements

Function

1.

a.

b.

C.

d.

e.

f.

g.

h.

i.

j.

2.

3.

Data Compression

Debiasing

Difference Coding

Zero Order Poly-
nomial Predictor

Zero Order Poly-
nomial Inter-
polator

First Order Poly-
nomial Predictor

First Order Poly-
nomial Inter-
polator

Orthogonal Poly-
nomial Coef-
ficients

Quantiles
Computation

Moment Com-
putation

Data Reduction

Sensor Sequencing
and Scheduling

Sensor Pointing
and Control

~~ ~~

Instr.

17

19

20

110

73

17 5

324

76

57

750

1000

1500

Storage
(Words)
Const.

5

0

45

41

41

41

40

630

11

5

175

100

Var .
~ ~~~~

10

220

160

210

210

210

520

800

315

90 0

200

75

Speed
(Operations/Sec)
Short Long

340

2900

3000

16500

10800

25600

110,000

12700

12000

1000

500

10000

"-

-"

"-

"_

200

200

35,300

"-

400

20

5

4000

Word
Length
(Bits)

10

10

10

10

10

10

12

10

10

14

16

16

Note: Some of the storage requirements for these two phases are duplicated, and
therefore they may not be summed up, e. g. , total storage required for
"Difference Coding' for the entire mission is 19 instructions.

45

-e P.+RAMETER
ORTAlN Ith

FROM UlEhlORY

+
PERFORM RANGE

I

PERFORM RATE

j -]+I I A ISOUTION
ROUTINE

NO

I PARAMETER

k - k * l

PERFORM FAILURE
PREDICTION TESTS

Figure 2-8. Flow Chart for Status Monitoring Routine

46

2.9 COMPUTER REQUIREMENTS

In the previous sections the computer functions have been presented and in this
section the computer requirements shall be given. Before presenting the requirements,
it may be worth while to discuss in general the methods used in obtaining the require-
ments. Basically the computer requirements are determined by investigating the
equations and functional flow diagrams necessary for implementation of the system.
Analysis of these identifies: (1) subfunctions for commonality, thereby resulting in
possible subroutines, and (2) interdependence, i. e., the determination if partial
results are required in later computations. A trial programming procedure is then
used to obtain the requirements. Trial programming is coding without concern of
address location o r optimum coding. The requirements are then derived in terms
of storage and speed.

The computer requirements for the multiprocessor study were first derived
assuming a basic G P computer with a basic instruction repertoire was available;
the requirements were then derived assuming certain features available such as
indexing, multiple accumulators, etc. Appendix 1 contains a tabulation of the require-
ments obtained assuming a basic GP computer. The requirements are tabulated as
storage (instructions, constants, and variables) in words, speed (short: Add, Subtract,
etc. and long: Multiply, divide, etc. operations) in operations per second, and word
length in bits where available. A detailed tabulation of the requirements for all the
functions in every phase of the mission is given in this appendix. It should be
remembered when reading this appendix that no special features such as indexing]
multiple accumulators, indirecting, etc were assumed and no consideration was given
to banking and computer word length i. e. double precision and half length requirements
were not considered in determining the speed and storage requirements.

Tradeoffs were made on machine features by evaluating the effects on the
requirements. These tradeoffs will be discussed in detail in Section IV,
Paragraph 4.2.1. The requirements presented here in Table 2-5 a re based on the
following assumptions: an 18 bit word size computer with considerations of multiple
precision operations and banking requirements, two accumulators a re available, one
index register is available, and a basic instruction repertoire is available. It should
be noted that no provision is made for executive, self test, utility subroutines o r
Input/output requirements in the numbers given in Table 2-5. A rough estimate of the
total requirements can be determined] if desired, by approximately a 20-25% increase
in the figures given in Table 2-5. (This also holds true for Appendix 1.)

Storage requirements given below are the total number of words for instructions,
constants, and variables; speed requirements are the total number of operations per
second (equivalent short operations where it is assumed a long operation = 3 x short
operation).

It should be noted for the purpose of presenting the requirements that the mission
has been broken down into twenty phases. The requirements for the four basic functions
described in paragraph 2.8 are given for each of these twenty mission phases.

47

Table 2-5. Computer Requirements by Mission Phase

Mission Phase

1. ATM. ASCENT
a. Navigation and Guidance
b. Telecommunication
c. Scientific Experiments
d. Status Monitor

2. EARTH ORBITAL
a. Navigation and Guidance
b. Telecommunication
c. scientific Experiments
d. Status Monitor

3. TRANS MARS INJ.
a. Navigation and Guidance
b. Telecommunication
c. Scientific Experiments
d. Status Monitor

4. TRANS MARS COAST
a. Navigation and Guidance
b. Telecommunication
c. Scientific Experiments
d. Status Monitor

5. TRAJ. CORR.
a. Navigation and Guidance
b. Telecommunication
c. Scientific Experiments
d. Status Monitor

6. SPIN UP
a. Navigation and Guidance
b. Telecommunication
c. Scientific Experiments
d. Status Monitor

Storage
(words)

664
600

960

2224

6143
600

3560

10303

1994
600

1820

4414

5026
2800
4753
3560

16139

2479
2000
4753
1820

11052

1060
2800
4753
1820

10433

Speed
(Short ops/sec)

"

1852
1600

1360

4812

101202
1600

8000

110802

51904
1600

4050

57554

65360
6500

10572
8000

90432

133904
6500

10572
4050

155026

63000
6500

10572
4050

84122
~ ~ ~~

48

Table 2-5. (Cont)
- _ _ _ ~

Mission Phase
" . ~ ~ ~ _ _

7. SPIN CRUISE
a. Navigation and Guidance
b. Telecommunication
c. Scientific Experiments
d. Status Monitor

8. DESPIN
(Same as 6. SPIN UP)

9. MARSAPPR. CORR.
a. Navigation and Guidance
b. Telecommunication
c. Scientific Experiments
d. Status Monitor

10. AEROBRAKING
a. Navigation and Guidance
b. Telecommunication
c. Scientific Experiments
d. Status Monitor

11. MARS ORBIT INJ.
a. Navigation and Guidance
b. Telecommunication
c. Scientific Experiments
d. Status Monitor

12. MARS ORBITAL
a. Navigation and Guidance
b. Telecommunication
c. Scientific Experiments
d. Status Monitor

13. TRANS EARTH INJ.
a. Navigation and Guidance
b. Telecommunication
c. Scientific Experiments
d. Status Monitor

Storage
(words)

5616
2800
4753
3560
16729

10433

2799
2800
4753
1820
12172

3400
2800
4753
1820

12773

1329
2800
4753
1820
10702
-

6143
5730
6840
3560
22273
-

1749
2800
4753
1820
11122
-

Speed
(Short ops/sec)

69160
6500
10572
8000
94232

84122

133904
6500
10572
4050

155026

42000
6500
10572
4050
63122

39904
6500
10572
4050
61026

101202
15000

255000
8200

379402

55704
6500
10572
4050
76826

49

Table 2-5. (Cont)

MissiQn Phase

14. TRANS EARTH COAST
(Same as 4. TRANS MARS
COAST)

15. TRAJ. CORR.
(Same as 5. TRAJ. CORR.)

16. SPIN U P
(Same as 6. SPIN UP)

17. SPIN CRUISE
(Same as 7. SPIN CRUISE)

18. DESPIN
(Same as 8. DESPIN)

19. EARTH APPR. CORR.
a. Navigation and Guidance
b. Telecommunication
c. Scientific Experiments
d. Status Monitor

20. EARTH RE-ENTRY
a. Navigation and Guidance
b. Telecommunication
c. Scientific Experiments
d. Status Monitor

16139

11052

10433

16729

10433

3544
60 0

1820

5964

6200
600

1820

8620

Speed
(Short ops/sec)
~ "

90432

155026

84122

94232

84122

193904
1600

4050

199554

63360
1600

4050

69010
~

Two graphs are given (Figure 2-9, Figure 2-10) showing the speed and storage
requirements per phase. Each of these graphs consist of computations performed
continuously (shown as solid lines) and computations &t may Il_e performed periodi-
cally (shown as dotted lines). It should be noted that speed requirements which are
periodic are not additive - that is they will not require simultaneous computation of
their periodic programs. These periodic computations are 1/2 hour every 3 days
(Navigation and Guidance functions), 1/2 hour every 5 hours (scientific experiments),
and on demand (checkout functions). It should be noted that only a portion of the
above three functions can be broken down into such periodic portions. In addition,
these periodic functions may be scheduled so as not to occur during short duration
phases such as 5, 6, 8, 9, 10, 11, 13, 15, 16, and 18. This is why the speed and
storage requirements on the graphs are lower in these phases than those given in
Table 2-5. It should be noted that the total storage required for the other phases
shown in Figure 2-9 corresponds exactly to that given in the table. (Note that the
storage shown in dotted lines is required periodically only.)

in Figure 2-10. In phases 4, 7, 14, and 17 when the periodic requirements exist,
the speed requirements are actually greater than those given in the table. This is

However, this is not the case for the total speed required per phase as shown

50

I

24 ,-
I

1

20 I

a

4

0

'r

DASHED LINES
INDICATE FUNCTIONS
THAT MAY BE PERFORMED
PERIODICALLY

8

=I-
O. 4

I
I

9 10

0.6 -

-
11

- 74. :

-
12 13 14 15 16

I

MISSION PHASE

Figure 2-9. Computer Storage Requirements

I
1

DASHED LINE
INDICATES
FUNCTIONS
THAT MAY
BE REQUIRED
PERIODICALLY

2 3 4 5 6 7 8 9 1 0 1 1

MISSION PHASE

13 14 15 16 17 18
1 19 20

Figure 2- 10. Computer Speed Requirements

due to the fact that the requirements for the functions were listed in the table as
continuous requirements. If functions are performed periodically, in particular' the
scientific experiments data handling, there must be more data processed in a shorter
period of time. This increase in processing speed may be varied by changing the
on/off ratio of the function. The 1/2 hr/5 hrs for the experiment data processing
gives a 1/10 ratio, which gives approximately an increase in speed by a factor of
10 over the speed requirement of this function if it were processed continuously.

These periodic requirements were pointed out since they may effect the design
of a multiprocessing system. This may be seen from Figures 2 - Y and 3-10 since it
may now be possible to turn a portion of storage in a computer on and off periodically
which may have the effect of reducing power consumption and also increasing
reliability.

It is important to note here that the total storage requirement varies from phase
to phase. The storage has not been cumulative added from phase to phase since it
has been assumed that a bulk storage facility will be available for storing the programs
required in each phase. If the computer were required to store the programs for the
entire mission the total storage required per phase would increase considerably. The
effects of this type of storage approach can be seen by examining the chart shown in
Appendix A.

The above discussions have established the computer system speed and storage
requirements. However, there are several other considerations that effect the
computer requirements:

There are several phases in which the computations being carried out may be
considered as ffcritical. 1 1 The critical computations have two distinct considerations:
failure detection and reconfiguration. Phases 10 and 20, Mars Aerobraking and Earth
re-entry, contain critical computations, the navigation and guidance computations of
these phases are critical in both failure detection and reconfiguration. The critical
nature of these computations can be appreciated if one considers that as part of the
navigation and guidance function, attitude commands are being computed and the vehicle
may be near a temperature or acceleration limit, loss of attitude commands may
possibly cause destruction of the vehicle. After investigating the navigation and
guidance function for these entry phases, a total time of 5 seconds was defined as the
maximum acceptable to detect a failure and also reconfigure the computation; recon-
figuration is defined here as having the computational program with all the necessary
values of the variables mechanized and being performed correctly in a computational
facility after a detected failure.

It should be noted here that during phase 10, Mars aerobraking, the round trip
communication time delay may be on the order of 30 minutes. This time delay makes
it unfeasible to rely on earth based assistance during such a critical phase.

Another important point to note is that two reliability requirement constraints
may be identified: Probability of Success and Availability. Probability of success is
the appropriate parameter to consider as a reliability requirement during the critical
phases of the mission while availability should be considered for the non-critical
phases such as cruise and coast, Probability of success is not a very meaningful
term in the non-critical phases; a computer failure has different effects on the
mission depending on whether it occurred in critical o r non-critical phases. Generally
what one is interested in during the non-critical phases is what portion of that phase is
the computer system operating correctly or availability of the computer system.

53

Phases 3, 5, 9, 11, 13, 15 and 19, which are basically trajectory corrections,
may also be considered critical. However, the computations are critical only in terms
of failure detection and once again the 5 second figure should be the maximum time
allowed to detect a failure. Unlike the critical computations during the entry phases,
loss of the computations during the above phases can simply result in shutting down
the thrust motor with no catastrophic results, therefore, reconfiguration is not critical.
The critical factor is to detect a failure and terminate the thrusting maneuver, after
the failure is repaired a new trajectory calculation can be made and a new correction
computed and applied. (This does not preclude the possibility of being able to recon-
figure in 5 seconds also, since this requirement imposed by phases 1 0 and 20 may
result in having this capability in these other critical phases also, particularly since
phase 20 is the last phase of the mission.)

This Section has presented computer system requirements for the manned Mars
mission. Based on these .requirements various multiprocessing concepts shall be
considered to evaluate their potential in meeting these requirements.

54

I 11. COMPONENT TECHNOLOGY

3.1 INTRODUCTION

In establishing the multiprocessor configurations and performing the tradeoffs
to determine the most promising approach it is necessary to establish the technolo-
gies to be used in memories and circuits. The time period of interest for the Manned
Mars Mission is 1980; however the technology time frame should be 1973-1975.
This means that a usable technology must be in production by this time in order to
allow for prototype construction and testing, and final design and construction of the
computation system. The prototype system will of course need extensive reliability
tests (greater than a year). Computer technology has had such a drastic change over
the last six to eight years that it is hard to predict the most applicable technology at
the end of the next six to eight years. Since it is desirable to choose a specific
technology so that the study can proceed on a relatively concrete basis, a reasonable
approach seems to be to examine technologies currently under development, use
their functional characteristics for design, and extrapolate their physical characteris-
tics to 1975 in order to perform tradeoffs. This is the approach being used.

3.2 CIRCUIT TECHNOLOGY

3.2.1 Introduction

In the semiconductor industry the trend is toward more complex array type
structures in which hundreds of circuit functions are interconnected on a single chip.
This approach provides lower power and higher reliability. The power is reduced
primarily because interconnection capacitance is reduced. Reliability is primarily
increased because there is an order of magnitude reduction in components and
connections. The array type structures are currently being produced in limited
quantities; however, it is expected that by 1975 the array type approach will be a
common proven technology.

Presently there are two device approaches available which are compatible with
array fabrication techniques: MOS, and bipolar IC's.

The circuit technology under primary consideration for this study is MOS
(Metal-Oxide-Semiconductor). In particular, by the 1973-1975 time frame isolated
MOS devices on an insulating substrate (heteroepitaxial technology) should have
proven high reliability, low power and cost, and good radiation resistance. An
example of this technology is the Silicon-on-Sapphire (SOS) circuitry presently being
developed at Autonetics. As a result the sections of this report discussing circuit
implementations will refer to the use of MOS-SOS chips. The densities and packaging
used will be those assumed to be reliably feasible in 1975.

3.2.2 Advantages of MOSSOS For Space

The SOS technology consists of a sapphire substrate with interconnected thin
film silicon devices on one surface. The devices are fabricated in electrically-
isolated islands of the silicon film. Array intraconnections are made by vacuum
deposited aluminum or other metal films. The result is a fully integrated thin film
circuit array on an insulating substrate employing single crystal silicon material and
silicon integrated circuit batch fabrication processes. This technique thus possesses
the electrical isolation and design flexibility of thin film-hybrid circuits which is the

55

essential attribute necessary to succeed in making large, high density functional
devices. It also provides all the advantages associated with MOS technology.
Figure 3-1 shows a cross-sectional view of a MOSSOS field effect transistor.

For space applications MOS should prove to be the technology of the future for
a number of reasons. Its power drain is significantly lower than that associated with
bipolar circuits. The higher yields and much smaller size of MOS enable MOS chip
complexities to be increased over that of bipolar. It is anticipated that the increase
in density offers the potential of a greater reliability since fewer packages and
intraconnections are necessary in a given system. (Data'tends to point to the fact
that the number of packages in a system and not the complexity of the packages have
the dominant effect on system reliability.) Simpler processing and this same high
density also gives MOS circuitry the potential for a large cost savings. The only
present disadvantages associated with MOS circuitry co,mpared to bipolar circuitry
are its slower speed and lower radiation resistance. The speed difference should be
somewhat overcome by the development of practical MOS-SOS complementary cir-
cuits. These circuits presently yield lOns gate switching speeds in Autonetics'
labs. However,. in space applications the requirements for computation speed as
defined in the previous chapter a r e not severe and in any case can be more reliably
met by multiprocessor organizations such as those under study on this contract.
Very high radiation resistance is at least not a requirement for manned space
missions; however, it may be for other missions. Studies are presently being
carried out to investigate such developments as new insulation layers in MOS
devices. Replacement of SiOz by other insulators such as MgO offers the possibil-
ity, by 1975, of an increase in the radiation resistance of MOS devices by an order
of magnitude o r more. MgO MOS devices have been made in Autonetics' labs.

GATE STRIP
0.1 MICRON

METAL DRAIN

- 10 MICRONS - \
SILICON ISLAND

I SAPPHIRE

Figure 3-1. Cross-Section of P-Channel Junction Qpe MOS/SOS Transistor

66

As mentioned earlier, the fabrication method associated with MOSSOS devices
give it a number of attributes beyond those of bulk MOS devices. A few of these are
listed:

1. The electrical isolation of all elements and interconnections on an
insulator enables fabrication of devices with better electrical character-
istics, with multilayer interconnections, and with the possibility for
improved reliability. A reliability improvement is possible since less
silicon surface area is available for failures, such as shorts through the
Si02 layer.

2. Negligible parasitic lead capacitance and no substrate capacitance
means that transient power can be reduced by a factor of two o r more.

3. The transparency along with good thermal conducting properties of
the sapphire substrate provide excellent opportunity for packaging
innovations.

4. High tolerance to radiation (compared to bulk MOS) is expected due to
the inherent device isolation and small device junction size.

There are a number of other points of interest in a discussion of the advantages
of MOS-SOS for space applications; however, the above discussion should adequately
substantiate the choice of a heteroepitaxial technology (MOS-SOS). In short, this
technology should be well established by 1975 and should also offer reliability, power,
and cost advantages over other technologies.

3.2. 3 MOS/SOS Characteristics for 1973-1975.

As mentioned earlier, an accurate estimation of the physical properties of
MOS/SOS in the 1973-1975 time frame is difficult to make. Such an estimation would
most likely be conservative since actual processing breakthroughs cannot be antici-
pated. In any case to make estimations, Autonetics' past experience in its MOS
and MOS/SOS pilot line construction of complex chips (800 FET's per 100 x 150 mil
chip) and from Research and Development Lab work on MOS/SOS technology was used.
The present MOS devices (FET's) are about . 3 by . 8 mils (larger devices are also
used) and can be spaced approximately 1.2 mils center to center (present MOS/SOS
devices cannot quite do this well); however actual complex circuits need so many
lines and crossovers that the average densities are not nearly this high (800 FET's
per 100 x 150 mils). Future multi-level crossover development and interconnection
schemes along with smaller devices should enable circuits to be built with an average
center to center spacing of 2 mils; however, this will require a considerable amount
of MOS/SOS process improvement. In order to be slightly conservative an average of
2 mils. center to center spacing will be used for 1975 MOS circuits. This gives
approximately 5,500 FET's per 150 mils square. The,actual chip size to produce
good yields on complex circuits is not clear; however, 150 mils seems reasonable
and will be chosen as a conservative estimate. The actual number of FET's probably
lies in a range around 5,600, such as 4,000 to 6,500. Clearly, a few processing
breakthroughs enabling yields to be increased would make larger chips available.
For example, a 200 mil square chip (or larger) may well be usable in the 1975 time
frame, Such a chip could contain 10,000 FET's. The 5,500 density number will be
used to estimate the number of MOS/SOS chips necessary for implementation of any
given candidate. In these estimates it is not critical aa to whether the chip is 150 mils
aquare o r 200 mils square. The only fact of importance is that a small chip with
5,500 devices can be produced with reasonable yields.

57

Complementary MOS/SOS circuits presently show 5 to 10 ns unloaded gate
switching speeds in the lab; as a result these devices in production in the 1975 time
frame should be capable of operating at a five megacycle o r better clock rate. The
processors under consideration for this mission only require about a two megacycle
clock; consequently, the MOS/SOS chips will easily be able to handle the speed
requirements.

MOS chips are presently packaged in forty lead packs. This situation should be
improved with future packaging methods. As an aid, for example, lines could be
fanned out on the sapphire substrate so that larger packages could be used. Again, it
is difficult to predict the development of the packaging technology, but it should
certainly be reasonable to expect 100 to 150 pin packs for MOS/SOS chips in the 1975
time frame.

3 . 3 MEMORY TECHNOLOGY

Three main types of memory have been considered for the multiprocessing
candidate systems. These are DRO core memory, NDRO magnetic memory, and
NDRO semiconductor (MOS/SOS) memory.

All three approaches have been considered for the multiple computer and modular
multiprocessor organizations. The NDRO magnetic memory has been chosen over the
DRO core structure for the 1975 time frame. The reasons behind this choice along
with a discussion of these two approaches are given in Section VI. In short, the NDRO
magnetic structure offers increased reliability due to less sensitivity to transients,
high quality control from a batch processed structure, and the ability to use many LSI
circuits in its structure. (DRO structures in the 1975 time frame appear to require
too much current to be amenable to the use of LSI circuitry.) This structure also
dissipates less power than a DRO structure. A choice was not made between the NDRO
magnetic and semiconductor structures. Both of the structures should be able to meet
the reliability requirements in the 1975 time frame; however, the magnetic structure
requires fewer processing developments in order to meet these requirements. (Its
risk is lower.) However, either structure offers low risk. The semiconductor memory,
on the other hand, should dissipate less power than the magnetic structure. Both of
these structures are discussed in some depth in Section VI.

The distributed logic structure presented in Section IV, 4. 3 uses MOS/SOS chips
for memory and processing. This technology has been discussed in Section 111, 3.2.

A bulk memory is also included in all three organizations. This memory will
contain about 108 bits and will be used to store all programs for all phases and for
buffering of telecommunications, TV, and other high rate input output. This memory
is discussed in Appendix 2.

58

IV. MULTIPROCESSOR CANDIDATE ORGANIZATIONS

4.1 INTRODUCTION

Three candidate multiprocessor computer organizations were designed to
implement the requirements set forth in section 2 using the technology base established
in section 3. These candidates are: (1) Multi-Computer, (2) Modular Multiprocessor,
and (3) Distributed Processor. The first two candidates have sufficient general
commonalities to warrant their being presented in paragraph 4.2 with the commonalities
and peculiarities of each discussed therein. The Distributed Processor will be discussed
in paragraph 4.3.

4.2 MULTI-COMPUTER AND MODULAR MULTIPROCESSOR

4.2.1 General Organizational - Considerations and Features

4.2.1.1 General Features

Many of the considerations were the same in the preliminary design of the
Multiple Computer and the Modular Multiprocessor (hereafter referred to simply as
Multiprocessor); therefore, a discussion of features common to both organizations
and how the requirements effect the organization is given prior to a discussion of any
of the candidate organizations. The features discussed in this section are for the most
part arithmetic and control or processor section oriented. There are also a number of
similar features in the memory and Input/output sections of these two candidates; how-
ever, it was felt that the considerations leading to these sections were sufficiently
unique to warrant separate discussions for all the candidates.

An 18 bit instruction word shown in Figure 4-1 has been chosen, This format was
chosen after tradeoffs.on various other formats described below; these tradeoffs a re
reported in paragraph 4.2.1.2 and were performed by analyzing a number of represent-
ative programs. A s an alternative] the format of the chosen 16 bit instruction word is
shown in Figure 4-2; the 16 bit approach could be taken if further study were expended
to determine (a) if a 32 bit double precision data word is sufficient to meet data accu-
racy requirements and (b) if not having indirect addressing and having a total of 5
instead of 9 Index/Bank registers did not reduce the programing efficiency greatly,
The first 6 bits of these instructions are used for the op code. 0 eration code exten-
sions for instructions that do not require full addresses] e.g., $0 instructions, accu-
mulator to accumulator operations, and register transfers] give the facility for many
more than 64 instructions.

The instructions will use a banking scheme so that it will only be necessary to
have an address decrement in the Instruction word. Programing studies carried out
on various programs at Autonetics and also on this study have shown that a 7 bit
address decrement provides little inefficiency penalties in terms of speed decreases
or storage increases, and that the indexbanking scheme using full length registers
greatly reduces the banking problems,

The 18 bit instruction contains one bit, I, for indirect addressing. Both instruc-
tions contain B and T bits for the Index/Banking tags, One bit is used for the B tag
and specifies one of two indexbank registers, the 18 bit instruction contains 3 bits for
the T tag to specify either one or none of 7 registers while the 16 bit instruction uses

59

1 6 7 8 11 18

I 6
OP CODE I I1lB1l T3 I ADDRESS I 7

Figure 4-1. 18-bit Instruction Word

1 6 7 9 16 .. "

I 6 7
OP CODE 1B'I T2 I ADDRESS 1

Flgure 4-2. 16-blt Inetructlon Word

60

2 bits for the T tag to specify either one o r none of 3 registers. This Index/banking
scheme offers a certain amount of double indexing o r banking. The indexbanking
schemes will be further discussed below. It should be mentioned that the indirect bit
was considered to be of marginal value; the other 17 bits were firmly chosen based on
an evaluation of the features. An indirect bit was considered next in terms of utility
to complete the 18 bit word.

Various possibilities considered for the 18 and 16 bit instruction word formats
are shown in Figure 4-3. Of course many other variations are possible; however
these were considered the most promising possibilities. 'It should be noted that for all
instructions for which i t is applicable the 6 bits for the op code a r e broken down into
5 bits for the op code and 1 bit for an accumulator tag. A s part of the programing
analysis the use of the second accumulator was evaluated to determine if the use of
the accumulators was symmetrical enough to include an accumulator tag. This simpli-
fies the logic somewhat.

Two basic banking-indexing schemes were considered; the first scheme was
selected using: 1 and 3 bits. One scheme uses: one bit to specify one of two full-length
registers and then two or three other bits to specify either one o r none of three or
seven other registers. The second scheme uses: four bits to specify any combination
of five registers taken zero, one, o r two at a time. The important point to notice
about both of these structures is that there is no real distinction between bank regis-
ters and index registers since they are both full length (18 bits). Any of the registers
can be added to the address decrement to generate a full length address or certain
combinations of two registers can be added together (depending on which of the two
schemes is chosen) and added to the address decrement to generate a full length
address. These schemes have a number of advantages in terms of flexibility of use.
For example one of the indexbank registers can be used to address a certain bank
and can also be counted down and compared to a value. The schemes also offer the
ability to double index. This means that a program can be set up (including index
decrementing and comparing) without regard to the location of the program. Double
indexing also makes the programer's task much easier where a number of index
registers are needed, for example matrix manipulations. It is important to notice
that full length bank registers means that there are no fixed bank boundaries. The only
constraint is that a bank contains a maximum of 128 words. This means that i t is not
necessary for the programmer (or the assembler) to pack a number of programs or
blocks of data into fixed size and location banks. (This would be necessary if bank
registers containing only the upper 9 bits of an address were used.) Full length
bank/index registers also means that banks of information are relocatable to any
location in memory.

Two upper accumulators will be used. This decision was based on programing
studies carried out a t Autonetics on previous programs and also on this study. Some
of these tradeoffs on two accumulators are given in paragraph 4.2.1.2. The two accu-
mulators will be used referenced by an accumulator bit in the operation code in a
number of instructions that access the memory. For accumulator to accumulator
instructions a separate register instruction format utilizing operation code extension
is used. This format enables the processor to carry out logical and arithmetic oper-
ations using the accumulators and the indexbank reglsters. A s a result, the index/
bank registers now used for hot storage plus addressing are increased.from the 16
blts required for addressing to 18 bits. This provides for efficient use of the 9 index/
bank registers since they must be connected to the adder for generating an address in
any case. However it should be noted that the above use of the indexbank registers

61

1 6 7 8 11 18

OP CODE T . ADDRESS -
6 3 I 7

1 6 7 8 10 ~ 18

I 6
~ ~ __-

8
OP CODE ADDRESS I

1 6 7 10 18
6 1 3

~

I I 8
OP CODE B T ADDRESS

1 6 7 11 18
6

ADDRESS T I OP CODE
7 4 1 I

1 6 10

I 1 1
.. . - 18

6
OP CODE

4
T

8
ADDRESS

1 6 7 9 16
6 7

CODE ADDRESS I

Figure 4-3. Instruction Word Formats

62

...

will not make them equivalent to accumulators (or like true general registers) since
they cannot be used to carry out operations directly with operands from memory.
This latter feature was evaiuated to be of little use if two upper accumulators are
available. Further discussion of the value of the above features is discussed in para-
graph 4.2.1.2.

It is possible to include indirect addressing as either a bit in the instruction word
o r as one of the index registers' tag values. The former implementation enables
indirect addressing and indexing whereas the latter does not. The former approach was
selected as discussed in 4.2.1.2.

The indirect word format (the word picked up by the initial address) uses bits one
and two to specify the indirect operation and bits 3 to 18 to specify an address. Bits
one and two are interpreted in the following manner:

1:2 = 00 - end - direct address
01 - index with T1 register
10 - indirect address
11 - index with T1 and indirect

It should be noted that the above format not only allows multiple level indirecting
and indexing but also allows simply indexing after indirecting. This latter feature is
very useful when a reconfiguratlon has caused a block of information to be moved to a
new location.

For a time consideration was also given to using one bit to specify fixed bank 0
(upper address bits equal to 0) and one bank register instead of two bank registers
specified by this bit. The thought was that this would save hardware and also provide
for easy subroutine linkage and bank/index constant storage; however, the multi-
processor organization imposes certain restrictions on accessing memories which will
be discussed later and this made using a fixed bank impractical.

It is possible to include a masked mode of operation in the processor. The
masked mode would be entered by an instruction that would set the masked flip-flop
to one. All appropriate instructions executed while the flip-flop is "one" would use
the second upper accumulator to mask the operands that c o w in from memory. For
example a masked mode add could be executed as follows:

U1 + U2 (M) - U1 M = m+B1

where

U1, Us = accumulators
B1 = Index/bank register B1
m = address decrement

(M) = contents of location M

The masked mode is useful if there are a reasonable number of operations with
data that is packed with more than one character per word. This situation exists for
some scientific experiments where 8 o r 9 bit data seems to be sufficient. In these

63

situations the masked mode could be used to obtain half word operations. The
present requirements study has not uncovered sufficient situations in which a masked
mode would be useful to warrant its inclusion in the final processor specification.
However future requirements studies should investigate in some depth the usefulness
of such a mode especially in relation to one-half word data operations. I€ further
information on the masked mode is desired reference 18 listed the instructions that
could be executed in this mode.

Some floating point o r double precision operations are certainly necessary for
the computation system. The needs for these operations have been investigated to
some extent, but a much more thorough investigation is necessary to explicitly deter-
mine the following:

1. Is floating point o r double precision the best increased precision mode?

2. Should hardware (a double precision o r floating point mode) o r software be
used?

3. If hardware is used, should a few double precision or floating point instruc-
tions be included in the single precision mode (or conversely)?

The preliminary precision investigations carried out in this study indicated that
a floating point hardware mode using two word data would be well used in many navi-
gation and scientific experiment operations due to both the need for a considerable
amount of scaling and precision beyond 18 bits. A s a result floating point instructions
are listed and their operation briefly discussed in section 6.1.1. However it should
again be mentioned that the above conclusions need further substantiation since it is
not clear whether 30 bits of precision are sufficient. If not, a double precision mode
with 36 bits of precision would be used. The two word floating point number will use
a 30 bit mantissa and a 6 bit exponent although further study of this point is also
necessary since a 29 bit mantissa and a 7 bit exponent may be a better solution. In
any case the chosen floatin point number provides for thirty bits of precision on data
of magnitudes between L"3gand 232. An additional reason for inclusion of floating
point hardware was that by making a few simple additions to the adder (exponent
operations must be inhibited from affecting the mantissasand conversely), no additional
registers need to be added to the processor. A sizeable amount of control is necessary
to carry out the operations, but, as mentioned earlier, a large amount of gating can
be efficiently and reliably handled with MOS arrays.

A repeat mode has been included in the system. It is particularly useful for
carrying out memory check sum tests and for moving blocks of data in main memory.
This latter function is necessary during reconfigurations, at mission phase changes,
and on a lesser scale during operational periods. In this mode the operand cycle of
an instruction is executed on a succession of operands. The mode is entered by giving
a repeat command (REP) that sets a flip-flop and roads a specified index register, T7,
with the number of operands to be processed. The next instruction is then executed in
the repeat mode. Execution of operand cycles continues with T7 counted down each
cycle until it reaches zero. At this point the instruction is terminated and the next
instruction accessed. Clearly this repeat mode will save a significant amount of time
any time a list of data must be processed by one instruction, A good example of this
time savings is in the execution of a check sum test on a program, (This test may be
carried out periodically prlor to the executlon of 80me programs.) Wlthout a repeat
mode the check sum baslcally lnvolves a two lnstructlon loop of add and decrement and

64

test an index register. This is a 6 ps loop that is executed n times for an n instruc-
tion program. The same loop with a repeat mode requires only one instruction cycle
of 2 ps followed by n operand cycles of 2 ps. This means a check sum loop execution
time of 2 ps plus 2n ps compared to 6n ps. The instructions that can be executed in
the repeat mode a re given in Section VI, 6.1.1 along with a more detailed discussion of
its implementation.

4.2.1.2 Evaluation of Features

This section discusses the results of the evaluation and the basis for the
selection of the features presented in the preceding section and certain other features
required in the preliminary design of the candidate organizations.

4.2.1.2.1 Multi-Accumulators and Indexing

The requirements presented in Appendix 1 for phase 12 of the mission (Mars
orbital) were reevaluated with the ground rule that two accumulators and one index
register were available. The effects on the requirements from these features is
expected to carry over into other phases also. It should also be noted that these
requirements did not take into account computer word length. The only effects
examined were that of multi-accumulators and indexing. Table 4.1 presents the
results from this evaluation.

Table 4-1. Speed and Storage Requirements for Phase 12, Mars Orbital

Function
~

W q u i r e m e n t s
Function

~

Navigation and Guidance

Telecommunication

Science Experiments

Status Monitor

Totals

Storage
a b

5625 4348

6700 4700

8940 8561

5560 3560

26825 21169

Speed
a b

48949 46732

13000 13000

325715 252496

8000 8000

395664 320228

a: no indexing, one accumulator
b: one index register, two accumulators (Requirements do not consider word

1enRth)

For Navigation and Guidance indexing accounted for most of the decrease in
storage requirements (approximately 23% decrease) while the speed requirements had
a net reduction (increase due to indexing and a decrease due to two accumulators) of
approximately 6%. The Scientific Experiments-function had a slight decrease in
storage (approximately 4%) and a significant decrease in speed (approx. 23%). The
effect of these features is presented in more detail in Reference 17. The results
of this evaluation indicate that two accumulators and indexing are desired.

65

4.2.1.2.2 Word Length and Banking Size

The requirements for Mars orbital phase used above (from Appendix 1) were
evaluated with the consideration of computer word length, Two word lengths were
considered: 12 bits and 18 bits. The requirements were initially determined without
taking into account word length. It was assumed that two accumulators and one index
register were available in each case. The results of this evaluation are given in
Tahle 4-2.

Table 4-2. Speed and Storage Requirement
With a 12 Bit and 18 Bit E

~ for Phase 12, Mars Orbital,
x d Length

Storage (words)
X2 bit 18 bit *

Navigation and Guidance

Telecommunication

9373 6143. 4348

11194 6840 8561 Scientific Experiments

7730 5730 4700

Status Monitor

Total

I 4260 3560 3560

132557 22273 21169
"-

Speed (oPs/sec)
12 bit 18 bit *

140,196 101,202 46,732

26,000 15,000 13,000

272,421 245,000 252,496

8,400 8, 200 8,000

447,017 369,402 320,228

*Indicates no consideration of word length.
Storage and speed requirements increased in the Navigation and Guidance function

primarily due to the need for triple precision with a 12 bit word and double precision
with an 18 bit word. The requirements for the Scientific Experiments function decreased
somewhat with an 18 bit word primarily due to the ability to make use of half word
storage and operations, these gains due to half word capabilities are eliminated with
the 12 bit word.

Based on the above evaluations, the 18 bit word was selected since it provides
programming ease and reasonable processing speeds while using little extra memory.
This will be explained below. It should be noted that the reasons for the exact format
of the instruction word have not been defined yet, the remainder of this evaluation
section will complete the evaluation of the format. In addition, it should be mentioned
that the 18 bit discussion here applies equally well to a 16 bit word discussion. The
reasons for the exact word length selection, 16 or 18 bits, are given below in 4.2.1.2.3 of
this section where an evaluation of numerous machine features are presented.

This discussion presents the reas.ons behind a choice of a word length in the
vicinity of 18 bits rather than one in the vicinity of 12 bits. An 18 bit instruction word
leaves room for the inclusion of 64 operation codes. This means that no double length
instructions will be necessary since the 64 operation codes with extension provide
sufficient instructions to take advantage of multiple accumulators and index/bank
registers.

The advantage of thls word length can beet be understood by looking Into the
dlfflcultles encountered wlth the 12 blt word, A 12 blt lnetructlon word would require
a double length lnstructlon capablllty if lndexlng, multlple accumulators, lndlrect

66

addressing, etc., are to be included. From the discussion in 4.2.1.2.1 above
it is seen that elimination of these features would result in approximately a 20%
increase in storage. On the other hand inclusion of these features necessitates double
length instructions which result in approximately a 30% increase in storage. This
eliminates some of the advantages of the 12 bit word in attempting to reduce storage.
The Navigation and Guidance data is greater than 24 bits and as a result would have to
be operated upon in triple precision with a 12 bit word. This also increases storage.

less than l h t h decrease in the number of bits of storage and in fact gave a 1/3
increase in the number of words. This increase in the number of words can result in
more circuits required for the 12 bit memory. The complexity of a 12 bit processor
with double length instruction capability versus the complexity of an 18 bit processor
with only single length instruction capability is about the same. In addition, the 12 bit
processor would need to be faster. A s a result, there are very little if any hardware
gains by using a 12 bit word. An 18 bit word was therefore selected, thereby also
providing a more flexible machine to the programmer (no triple precision operations
or double length instructions to worry about). It should also be noted that a larger
instruction word was not considered since not only is it not warranted by the data
requirements but also a 7 bit bank causes no significant inefficiency penalties.

me r suits presented above in Table 4-2. showed that a 12 bit word provided

The choice of the 18 bit word leaves the possibility of using a 7 or 8 bit bank. A
7 bit bank was selected, some of the considerations involved in this selection a re given
below.

There is some increase in storage and execution time when going from a 256 word
bank to a 128 word bank size. Past studies at Autonetics on some navigation and
guidance routines indicated that a 128 word bank resulted in only a slight increase in
inefficiency over a 256 word bank. In addition, in the program used in the evaluation
here, there appeared to he little inefficiency in this bank size. One of the primary
reasons there appeared to be little or no problems was due to the full length I/B
registers since they did not result in rigid bank boundaries every certain 128 words.
In particular, when indexing with these full length registers there is practically no
effect due to the bank size. Most of the problems in going from a 256 word bank to
a 128 word bank then arise from non optimized location of data. However, a n optimum
banked assembler or forcing the programmer to handle the data banking optimization
could reduce this problem considerably. It is therefore recommended that a 7 bit bank
be used.

4.2.1.2.3 Accumulator Tag, Register-Register Operations, Indirect
Addressing, and Index/Bank Register Schemes

The above features were evaluated by investigating their usefullness in a number
of programs which were considered as representative of the computational functions.
These programs included: (1) Navigation and Guidance: Star Tracker Pointing, Body
to Inertial and Locally Level to Inertial transformation Matrix, and Kalman Filter
Computations, (2) Scientific Experiments: zero order polynomial predictor,
orthogonal polynomial series, and quantiles computation, and (3) Status Monitoring.
Details on these programs may be found in Section 11, 2.8.

These programs were mechanized assuming all the above features were
available. Then the programs were reevaluated with certain restrictions so as to
obtain asnwers to: (1) if there is no accumulator bit in the instruction word, what

Ih

67

additional instructions are required?, (2) what instructions are used in register-
accumulator and accumulator-accumulator operations?; (3) what is the effect of not
having indirect addressing?; (4) what is the effect of the indexbank register
schemes, i. e., any 5 I/B registers taken 0, 1, or 2 at a time, 1 B bit and 2 T bits
giving any one of 2 registers taken with any one or none of 3 other registers, and
1 B bit and 3 T bits giving any one of two registers taken with any one o r none of 7
other registers; and (5) what is the effect of not having double index/banking (single
level only).

The answers to the above questions were used to aid in selecting between a 16
and 18 bit instruction word and also for the particular instruction word format (see
paragraph 4.2.1.1 for the formats considered). A summary of the results will be
given below, detailed discussions are given in Reference 18.

1. Accumulator Bit

The following instructions used the accumulator bit in the routines
programmed.

Load
Store
Add
Subtract
Multiply
Divide
Compare
Jump on Conditions
Sum of Products - Multiply
Jump on Minus o r Zero
Logical rrAnd'r

A considerable number of instructions made use of the second accumulator.
It is therefore recommended that some means of providing for identifying
accumulator 1 or 2 be provided for those instructions that could use either
accumulator.

2. Instructions between Renisters and Instructions between Registers and Accumulators

Instructions used (Register-Accumulator) or (Register)

Store
Load
Subtract
Add
Multiply
Shift
Absolute Value
Compliment

Instructions used (Accumulator-Accumulator)

Add
Subtract
Multiply
Divide

68

Sum of Products - Multiply
Square
Load
Store

A considerable number of instructions made use of communication between the
accumulators. Also many instructions were used between the registers
and the accumulators although not as many as between the accumulators.
It is recommended that full arithmetic and transfer instructions be pro-
vided between the accumulators themselves and also between the accumu-
lators and registers. There was no apparent need for instructions between
the registers themselves, therefore this feature is not recommended.

3. Indirect Addressing

Although limited use was made of indirect addressing in the programs
evaluated, where it did occur (primarily for subroutine linkage) savings
of between 6 and 8 percent in storage was achieved for some programs. The
savings in timing were negligible however.

Indirect addressing is of considerable importance when it is desired to do
list processing. This is due to the fact that the link addresses normally
encountered in lists can be considered to be indirect addresses to the
following words in the list. The need for list processing is not apparent in
the present requirements. Therefore, the merits of indirect addressing due
to list processing will depend on future requirements, if any, for list
features.

It is recommended that indirect addressing be included since there are some
present indications of its merits and the combination of its inherent flexi-
bility of programming and potential to future requirements make it a pro-
mising feature.

4. Index/Bank Register Schemes

The preferred approach is to use 2 + 7 registers. The primary reason for
this choice is the availability of nine registers versus only five with the
others. In code sequences where multiple banks and indexes require more
than five current registers, the housekeeping involved in storing the
recovering register values went as high as 9% in storage and/or timing.

The approach using 5 registers with any combination 2 at a time shows some
advantage in coding where five or less registers were used. The savings,
however, are in the 3% range for storage and less than 1% in timing.

It should also be noted that the approach using 2 + 7 registers also provides
additional facilities for temporary storage when not all 9 registers are used
for indexing/banking. It is also worthwhile to mention that the coding which
uses a large number of registers involves multi-level iterations and a large
data base. Therefore in these programs the loss in efficiency due to less
registers shows up more pronounced.

69

5. Double Index/Banking Capability

Without this capability some of the scientific experiements programs were
somewhat’lengthened, some of these programs had execution time
increased by 50 percent. This capability is very useful in programs involving
matrix operations. It is recommended that this capability be included.

4. 2. 1. 3 Requirements and Organizational Considerations

There are a number of requirements that influence the computer design. These
have been rated as reliability - 100, power - 10, flexibility - 4 , and all others 1. Essentiallythis
says that the computer organization should try to take advantage of various schemes
to increase reliability and lower the power in light of the various computational
requirements. For reliability there are two basic considerations, one is an availa-
bility requirement of 0.997 for the whole mission. This can essentially be inter-
preted as a level of satisfaction for thc mission. In other words, if the computer
system is operating 99. 7% of the time the desired degree of success will be obtained.
Another important consideration is a probability of success of 0.997 for critical
mission phases. The computer system must be able to function during these critical
phases in order for the mission to be completed. During these critical phases
5 seconds are allowed to reconfigure to a second operating system if the primary
system fails. These numerical reliability values were obtained from an examination
of the references cited in Section 2.1.

The above availability and probability of success requirements have a profound
i d u e n c e on the system. In particular in order to meet the probability of success
during the critical mission phases some type of on-line back-up must be available.
During non-critical phases average times of 1/2 hour can be allowed to get back
on-line; as a result a repair replacement ability is sufficient.

One of the ways the importance of reliability and power affects the computer
system is in terms of the amount of hardware that can be kept off during any phase.
Data from Autonetics experience tends to point toward the fact that computers that
a r e not on-line have reliabilities on the order of 3 to 10 times or more greater than
the on-line modules; however this number has not been validated by a thorough
analysis. In fact it is not even clear if the off-line modules should be turned off
o r if bias power should be maintained. The above dictates that equipment be kept
off-line as much as possible. Therefore the computer systems are designed so that
during long phases a good portion of the computing hardware can be turned off. This
should not only increase reliability but also save a significant amount of power.

It should also be mentioned that there will be separate computer systems in the
Mars Mission Module and in the Mars Lander. These two computer systems should
be the same type since that will provide a simple sparing philosophy and will lower
development and production costs. Sparing can be simplified since the Lander com-
puter system must only be on-board the Lander and functioning correctly from Earth
to Mars and while in the M a r s area. On return, a Lander computer system can be
pulled off and placed aboard the Mars Mission Module to function as spares for the
return to Earth.

An interesting point to notice about the computational requirements is the
variation of speed and storage throughout the various mission phases. In particular,
during the long Trans-Mars and Trans-Earth phase8 the storage and speed require-
ments are relatively low and at about the same level. As a result it is desired to

70

design the computer system so that much of the computation speed and storage could
be turned off during these phases. Figures 2-8 and 2-9 also show the amount of
storage that is absolutely necessary to have operating continuously throughout the
Trans-Mars and Trans-Earth phases. The rest of the memory system could be
turned on and off periodically as shown in order to save power and increase reliabil-
ity. During phase 12 (Mars Orbital) the maximum amount of computation resources
will be in the system; as a result this phase dictates the maximum need for
computational resources.

4.2. 2 Multi Computer Organization

4. 2. 2. 1 Organizational Considerations

The past paragraphs have presented the requirements for the Mars Mission
computatior system and also some explicit features of the processors within this
computation system. The following paragraphs present the multiple computer
organization and features that were developed from the above requirements.

It should first be noted that a single computer organization can immediately be
thrown out since 5 seconds back-up in case of failure during critical mission phases
could not be provided. In order to provide this type of back-up a second on-line
computer carrying out the critical computations must be available. A single compu-
ter would also need a very high MTBF, and would be power and reliability consuming
during low computational load phases. Another disadvantage is that this type of an
organization is unable to flexibly meet unplanned variations in computational require-
ments by addition o r subtraction of the number of modules in the system.

4. 2. 2.1. 1 Duplex Computer Approach

A duplexed computer approach as shown in Figure 4-4 was next considered. This
approach is discussed in some detail in Reference 17. Briefly i t uses two computers
each capable of carrying out all the computations for the most heavily loaded phase
of the mission. The computations are carried out in both computers and the results
sent to the output switch. During normal operation the primary computer's outputs
are used and the secondary computer does output comparisons; however if the secon-
dary computer discovers a discrepancy it can carry out a software self-ckeck and i f
it passes a lengthy self-check process it will take over outputing information.

The supposed advantage of this type of an approach is in the ease and complete-
ness of failure detection; however the development of operational hardware and soft-
ware self-tests for a multiple computer, to be described next, has been evaluated to
be not much harder than the development of non-operational self-tests for one of the
duplex computers. There are also quite a number of disadvantages to this approach.
These are listed below:

1. Each computer must be able to handle all the computations. This
means two large power consuming computers.

2. During long relatively low computation phases, Trans-Mars and
Trans-Earth for example, there will be no chance to lower power
and increase reliability by turning a good portion of the system off.

71

SENSORS

I OUTPUT SWITCH

SECONDARY
COMPUTER

Jom
Figure 4-4. Duplexed Computer

3. After a failure of the primary computer there is no checking of the
computation system; as a result a failure may occur and never get
detected.

For the above reasons a duplexed computer approach was rejected.

4.2.2.1. 2 Multi Computer Approach

1. General Considerations

The chosen multiple computer system will be a two computer approach
where the computers operate separately each carrying out its own self
check. At least two computers are needed in this system since there is
a need to continue operation while one of the computers is in a state of
repair or replacement. This computer approach, shown in Figure 4-5,
was chosen because it is well suited to the system requirements as
demonstrated by the discussion below. Clearly i f the requirements
were to be increased for other applicable missions additional computers
could be added to the system.

A proper use of the above computer system during the critical and
.non-critical Non-Mars phases and the Mars-Orbital phases is discussed
in a later paragraph. Very simply during Non-Mars non-critical phases
only one computer will be in operation carrying out all the functions of
the system. During the critical phases two computers will be on-line-
the first one doing all of the system functions and the second doing a

72

SENSORS SENSORS

\ \ I t k \ I / \ I /
corn. COND." corn. ---

I/O

P (250 K SHORT
OPS/SEc)

M (24K)
12K

"""

12K

P (250 K SHORT

c 12K -""
12K

1

Figure 4-5. Two Computer Approach

redundant calculation of the critical information (navigation and guidance
information). This method of operation enables a reconfiguration in less
than 5 seconds. During Mars orbital operation two computers will be
carrying out the computations. Reconfiguration in these phases is
handled by a combination of repair replacement and switch-over to the
non-failed computer.

The size, speed, and number of modules in a Multiple Computer approach
is dictated by many factors. The most important of these for the Mars
mission is of course reliability. For any given computational requirement
the best reliability will be obtained by using the least number of computer
modules (not less than two) as long as the speed requirements do not force
the use of a less reliable memory and circuit technologies. This is
clear by considering the fact that a lesser number of modules simply
means less components for any given set of requirements. Another
important influence on the size, speed, and number of modules in the
system is the fact that off-line reliability is assumed to be much higher
than on-line reliability. For the Mars Mission this can be interpreted
to mean that it is desirable to turn off as many modules as possible during
the Trans-Mars and Trans-Earth phases. As a result, the size of the
modules should be adjusted so that during these phases the maximum
amount of computation resources are turned off. A third influence on the

73

size of modules is the computational requirement for the highest computation
rate phase, namely the Mars Orbital Phase. IXlring this phase it is desirable
to have all the modules in the system on and in use so that there will not be a lot
of extra hardware in the system. Another factor not considered here that
may have some influence on the size of modules is the requirements for the
Mars Lander Module. These requirements have not been evaluated and as a
result cannot be considered.
The above trade-off considerations dictated a processor size of approximately
250,000 short operations per second, and a memory per computer of 24,000
words. The memory is modular by 12,000 words as shown in Figure 4-5. The
memory size was decided upon by examining Figure 2-8 in Section II. This
figure shows that during the Trans-Mars and Trans-Earth phases, 4, 7, 14,
17, essentially 24,000 words are required if executive and 1/0 programs are
included. This figure also showed that approximately 12,000 words of storage
was needed to come in only intermittently. This was interpreted to mean that
the best memory size for the Trans-Mars and. Trans-Earth phases is 24,000
words with 12,000 word modules capable of individually having their power
turned off.
Phase E, Mars Orbital, was next analyzed for storage requirements. Two
computers each with 24,000 words were determined to easily provide suf-
fient storage since the actual requirements for this phase are approximately
30,000 words including 1/0 and executive programs. It was also determined
that during the major portion of phase 12, one computer could have one of its
E K memory boards turned off thus allowing an increase in reliability and a
decrease in power. This memory is also a convenient size for implementation
with a thin-film NDRO memory in the 1973-1975 technology time frame. Using
projected densities it enables getting a maximum amount of words per module
and thus make best use of the drivers, receivers, and sense amplifiers.

The processor speed requirements for the Trans-Mars and Trans-Earth
phases are relatively low in comparison to other shorter phases. Since
circuit counts for processor implementations are not actually increased
for reasonable increases in processor operating speed, it was decided
to make one processor capable of handling the fastest non-Mars orbital
phases. (This is true as long as the increase in operation speed does not
require the use of a new circuit technology.) The processor, including
execution of executive programs, was therefore made capable of handling
250,000 short operations per second. (See Figure 2-9 in Section IL)
This also means that two processors will not only easily be able to handle
the Phase 12 computation load but also will have extra computation power
available during all phases so that they can catch up on the computations
even if some reasonably long interruption occurs for a repa i r o r replace-
ment operation. In order to see that by 1980 a 250,000 operation per
second processor is feasible to implement in MOS o r MOS-SOS circuitry
(or bipolar arrays), a calculation of the clock rate was carried out using
250,000 operations per second, 2 memory cycles per short operation
and 4 clock pulses (bit times) per memory cycle. This calculation shows
the need for a 2.0 microsecond memory read o r write cycle for a NDRO

74

1 -

memory and a 2.0 megacycle clock for the processor. This certainly
is reasonable for the 1975 technology time frame as expressed in
Section Ill, 3-1.

The computer configurations for the multiple computer during the various
mission phases are tabulated below. As mentioned above both the
computers and the 12K memory modules within the computers are capable
of separate turn-on and turn-off.

Phases 1, 2: Computer 1, 1 memory module

Phases 3, 5, 6, 8, 9, Computer 1, 1 memory module
10, 11, 13, 15, 16, 18, Computer 2, 1 memory module - active
19, 20: redundancy

Phases 4, 7,
14, 17:

Phase 12:

Computer 1, 1 memory module on continuously,
2nd memory module on intermittently as shown
on storage requirement graph - Figure 2-8.

Computer 1, 1 memory module
Computer 2, 2 memory modules

The distribution of the computations is relatively straight forward except
for Phase 12. During this phase the functions are distributed as follows:

Computer 1

Computer 2

Telecommunications
Status Monitoring
Scientific Experiments (part)
Update Minimal Nav. & Guid.

Navigation and Guidance
Scientific Experiments (part)

In case of a failure during Phase 12 several actions may occur. If
Computer 1 fails, Computer 2 proceeds and Computer 1 is repaired. A
failure of Computer 2 will cause Computer 1 to enter into a minimal
navigation routine which was continually updated by Computer 2,
Computer 1 will also proceed with its other computations as normal.

If a spare computer or module is not available for repair, then the
operative computer is reconfigured with a new program, this reconfigura-
tion will contain:

Navigation and Guidance
Status/Monitoring
Telecommunications (reduced)
Scientific Experiments (reduced)

E Computer 2 failed under these conditions, Computer 1 will enter the
minimal navigation and guidance routine until the reconfigured program is
loaded with the normal navigation and guidance routine into Computer 1.
Reconfiguration is further discussed in Paragraph 4.2.2. 3.

75

SYSTEM
s UPPLY

Another consideration in the design is the power supply. A distributed
supply has been chosen for this system. Distributed supplies appear to
be the most reliable and easily implemented supplies for future time
frames. This is partly due to the fact that a central supply needs large
capacitors on each board of the computer system in order to supply
constant power when transient switching is taking place. Distributing the
supply by using a power supply per board eliminates these large unreliable
capacitors. This distribution also enables each board to receive only the
primary power level of the system. This combined with the above fact may
mean that the distributed supply actually will have less components than a
central supply system. The distribution of the power supply is made even
more reasonable with the onset of the MOS and MOS/SOS circuitry, since
these circuits allow microminiaturization due to their need for high voltages
and low currents. Two other advantages of distributing the power supply
a re the ease of expanding the system and its power requirements and the
ability to conveniently turn off all power to various sections of the system,
for example a memory module. This power turn off can occur by the
astronauts at phase changes o r automatically after failures.

In order to implement this last feature a transistor switch will be used on
the input to each power supply where appropriate. Such a switch for a
supply is shown in Figure 4-6. In the actual implementation this switch
may be a trans-switch (controlled by pulses) in order to provide isolation
of system o r battery ground and memory ground,

POWER OKOFF
SWITCH

POWER LOGICAL I POWER SUPPLY T CONTROL I
b VOLTAGE

MEMORY

LEVELS

Figure 4-6. 12K Memory Board Supply and On-Off Switch

76

I

2. Processor, Memory and 1/0 Structure

From the above discussion and from the processor features given earlier
a rough count can be obtained of the hardware necessary to implement the
processor for one of the computers in this two computer candidate. This
count as presented below was actually made with the aid of the processor
design given in Section VI. Therefore a full understanding of the purpose
of all the listed hardware can only be obtained by reading Chapter 6.

a.

b.

C.

d.

e.

f.

g.

h.

i.

j.

k.

1.

m.

n.

Two upper accumulators (36 bits)

One lower accumulator (18 bits)

One 15-bit program counter

Two 18-bit bank registers

Seven 18-bit index registers

One 6-bit instruction register and decoding for 64 op codes

One 18-bit memory register

One 4-bit tag register

One 5-bit shift register

One 18-bit parallel adder (a ripple carry adder is sufficient)

Bit time and mode clocks - 8 bits

Real Time clock (25 bits)

Fill clock (enables the processor to take up slack time in
periodic programs with background programs) - 8 bits

Control Flip-flops - 14 bits

This gives a total of approximately 320 flip-flops for implementation
of the processor. Using FET densities estimated for MOS/SOS in the
1975 time frame (approximately 5,500 FETS per 150 mils square),
a rough approximation says this processor could be implemented on
approximately two chips. Of course depending on the density and yield
tradeoffs in this time frame, the chips may be slightly larger than
150 mils square.

77

The memory hardware estimate below is for a 24K 18 bit word NDRO magnetic
memory. (For example today this memory would be fabricated from plated wire.)
The complete memory is actually made up of 12K modules. A discussion leading to
the decision to use an NDRO memory is given in section 6.1.2 along with block dia-
grams of memory systems. Section 6. l. 2 also points out that this memory could
be either a thin film magnetic approach or a semi-conductor approach. The circuit
counts are for a magnetic memory assuming LSI circuits (Bipolar) can be used in
the 1975 time frame.

1. TWO 12K modules of 1,000 word by 216 bit lines.. Hardware per module:

a. Word circuits - 16 LSI ckts.
b. Bit drivers - 18 LSI ckts.
c. Sense amplifiers - 18 LSI ckts.
d. Decoders - 3 LSI ckts.

2. One Current Source per 24K

3. One LSI timing generator per 2%

4. One MOS/SOS or LSI chip for the data register (18 bits), the address
register (15 bits), and read and write flip-flops.

The 1/0 section of the computer system is shown in Figure 4-5. Each compu-
ter has a central programmed controlled 1/0 section plus a number of connections
to conditioners and high rate devices such a s a bulk storage unit. The connections
to the high rate devices are parallel and those to the conditioners are serial. The
conditioners in turn are connected to a number of sensors and devices that handle
both the inputting and outputting of data. There are a number of reasons for the
present 1/0 structure. The trade-off was essentially carried out between the
structure shown in Figure 4-5 (a central 1/0 unit of exactly the same form in each
computer including standard format signals to a number of conditioners connected
to these 1/0 units) and a completely centralized structure which would have the
conditioning functions included in the 1/0 unit associated with each processor. The
reasons for using the conditioner structure instead of the latter structure are given:

1. Typically a completely centralized 1/0 unit is used to get a more efficient
use of hardware; however, in this system where reconfiguration is pos-
sible by disconnecting conditioners and connecting them to the second
computer, a centralized 1/0 unit would have to have enough hardware to
handle all the sensors. As a result a central 1/0 unit would not provide
any hardware savings over the 1/0 unit using single copies of conditioners
on-line.

2. The conditioner structure is also easily able to adapt to a change in sen-
sors, addition of sensors, or improvements in the sensor design. All
that is necessary is to add a conditioner or replace one that is already
there; whereas in the completely centralized 1/0 structure there is a
need to replace the complete 1/0 unit (the 1/0 unit will be just one MOS/
SOS chip).

3. The conditioner 1/0 structure also provides ease of adapting the computer
system to the Mars-Lander Module. This module will have significantly

78

different sensors from those on the Mars Mission Module. A s a result the condi-
tioner structure will provide the ability to use exactly the same basic computer with
only the need to change the appropriate conditioners in this module.

A s mentioned earlier a number of sensors must be handled in a strictly per-
iodic fashion; as a result a program scheduler has been included in the design of
this computer system. The scheduler is explained in paragraph 4.2.2.4. Basically
the scheduler uses the processor real time clock to be sure that all periodic pro-
grams are handled at the proper rate and time. The background programs or non-
periodic programs are interleaved with those that are periodic. The calling of 1/0
variables can be handled in two ways: first, the programs can have a header asso-
ciated with them that lists the 1/0 variables that must be called prior to program
execution. When the program is brought into execution its 1/0 variables are then
called by an 1/0 program. If processor waits for I/O variables can be limited, this
is a very efficient method. The second way to handle 1/0 variables is to add two
extra clocks or timers to the processor and use these in conjunction with the sched-
uler and Real Time Clock to call I/O variables early. This procedure has been
programmed and is shown to yield a software overhead of 0.5% processor time per
100 programs per second. This extra software and hardware cost should not prove
worthwhile in this system in light of the relatively small number of periodic pro-
grams that must be handled, and the low repetition rates of the periodic programs
(20 times per second is the highest rate). The processor will also be given the
ability to call 1/0 variables from a header and then leave the 1/0 unit to preempt
memory cycles and thus take care of loading the data into memory. During this
period the processor can execute a check sum on the fixed locations of the program
and begin operating on the program until the need to use the data comes up. It
should also be mentioned that the 1/0 units will receive interrupts and send these to
the processor as necessary.

No need is seen at the present time for both of the computers to process a
single job in parallel and thus have a need to exchange extensive amounts of data
or program information. However, during certain phases of the computations a
few words will be necessary to be exchanged between computers, such as, tele-
communication interleaving control words and a few pieces of navigation and guid-
ance data. A s a result a serial channel from the 1/0 unit of the secondary computer
to that of the primary computer will be included in the system. A rough 1/0 unit
hardware count is given below. This only includes the section in the computer itself
(not the conditioners). This count a€so assumes that the bulk storage unit has its
own control unit with buffering on its outputs. The design of the 1/0 unit is similar
to that for the multiprocessor; therefore, a description of the hardware is given in
Section VI, 6.1.3

1. One buffer register (18 bits)

2. One assembly shift register (18 bits)

3. One memory register (18 bits)

4. Two memory address counters (15 bits each)

5. One 7-bit count register for controlling off-line transfers

79

6. One 4-bit count register for controlling on-line transfers’

7. Seventeen control flip-flops.

This gives a total of 112 flip-flops. Using the same MOS/SOS densities as for
the processor the 1/0 could be implemented on one MOS/SOS chip. In fact if high
yields permit larger chips, the processor and 1/0 could be implemented together on
two 200 mils square chips.

The explicit design of the conditioners can not be given here since the sensors,
their characteristics, and their interface signals are not yet specified. However,
a cursory treatment of 1/0 rates and sensors was given in Reference 17.

The redundant calculation of certain computations during critical phases has
been discussed; however the output switching of the critical conditioners has not been
made clear. Figure 4-7 shows the output switching for a primary computer and a
secondary computer during a critical mission phase. These two computers can be
assumed to be the primary and secondary computers in the Two Computer implemen-
tation, o r the two separate sections of the Multiprocessor during a critical phase
(see paragraph 4.2.3). Figure 4-8 shows how the logic levels for control of the out-
put switch are generated within each computer. The switch is initialized with the
primary computer in control. If a failure occurs in the primary computer, the sec-
ondary computer will take over and continue operating. If there is a failure in the
secondary computer while the primary computer is still failed, all signals to the
outputs will be turned off. The BITE circuitry is discussed in paragraph 4.2.2.2.

CRITICAL SYSTEM OVTPUTS

Figure 4-7. Output Switching of Critical Conditioners

80

I

PRIMARY TRUE IF BAD
PROGRAM)S 1-

TO OUTPUT
BITE SWITCHES

CONTROLLED TIMING FF
PULSE CIRCUIT

7 .R 0

INITIALIZATION
SWITCH -

SECONDARY TO OUTPUT
PROGRAM SWITCHES
CONTROLLED
PULSE CIRCUIT

Figure 4-8. Logic Levels for Control of Critical Conditions

4 . 2 . 2 . 2 Failure Considerations and Reconfiwration

The ability to reconfigure the spaceborne multiprocessor in the event of equip-
ment failures is required in order to meet the probability of mission success and
availability goals. This section discusses the design of this capability for the Mul-
tiple Computer System.

The discussion is presented in the following five parts:

1. Basic Guidelines

2. Error Detection and Isolation Tests

3. External Status Reporting

4. Reconfiguration

5. Backup Equipment Assurance

The first part enumerates the important ground rules that are basic to the approach
taken. The next two parts discuss the problem of performance assurance and its
reporting which would signal the start of reconfiguration. The discussion of recon-
figuration relates the actions required for reconfiguration as a function of the mission
phase. The final part discusses testing of backup equipment to assure its readiness
when reconfiguration is required.

81

It should be mentioned here that the approach discussed in Section IV for fail-
ure detection and isolation tests is based primarily on a software approach. This
holds true for all three of the candidates. If solid failures are assumed the software
approaches will be adequate. However, if intermittent type e r ro r s are considered
to be of any significance (by this is meant errors that result in faulty conditions exist-
ing only for short periods of time, on the order of microseconds), then hardware
failure detection may be necessary. To complete this topic hardware failure detec-
tion methods will also be considered for the selected candidate. It should also be
noted that the considerations on reconfiguration were thought to be more difficult
or worst case in some respects with software failure detection methods (hardware
methods may offer greater ease of fault isolation) and therefore a broader spectrum
of reconfiguration problems has been assessed.

4.2.2.2.1 Basic Guidelines

1. Equipment is less prone to failure when it is turned off, rather than when
it is on. Therefore, where equipment is not needed by the computational
requirements of a particular mission phase, it is desirable to turn it off.

2. Similarly, power is conserved by turning equipment off when not needed.

3. At worst, the time from the occurrence of an e r r o r to the time the system
is reconfigured and properly functioning should not exceed 5 seconds.
Generally this minimal time applies to the critical mission phases and
can be much longer for non-critical phases.

4. Crew participation can be considered for the following functions:

a. Reconfiguration during non-critical phases
b. Turn-on and requests for checkout of idle standby equipment
c. Replacement of a failed equipment with a spare, verification of the

repair, and insertion of the equipment back into the system.

Within the framework of these basic guidelines the goal, for each candidate config-
uration, is to achieve 100 percent error detection capability and subsequent recon-
figuration which maximizes the probability of mission success and the availability
of the equipment. (Failure detection based on solid type failures will be primarily
considered here.)

4.2.2.2.2 Erro r Detection and Isolation Tests

The following paragraphs describe the tests required to insure timely indica-
tions of the multiple computer system status during the mission.

1. Memory Check Sum

The memory check sum routine simply add6 the contents of fixed storage
locations (instructions and constants) without regard to overflow and com-
pares the result with the prestored correct response. The function of the
test is to check for potential malfunctions in the computer memory and
processor.

The check 8um routine could be written to add all of fixed storage at one
time. This method was not chosen because of programming inefficiencies

82

which would result from having to keep track of which blocks in memory
contain fixed ififormation and which contain variable information. Instead
a check sum routine would be built into each major programming segment
and would be performed at the outset of the segment and possibly also at
the conclusion, time permitting. Parameters such as the starting address,
number of locations to be added, and expected check sum response are
included as part of the program segment package. Initialization, execution
of the check sum, and checking of the response would be handled by a utility
routine. With indexing and the appropriate index test, decrement, and
transfer instruction the check sum execution can be handled by a two instruc-
tion loop.

2. Arithmetic Section Functional Test

This test checks the performance of the arithmetic section logic circuits
of the processor. No special test instructions are envisioned; therefore,
no additional hardware would be designed into the system to perform this
test. Patterns for exhaustively testing the arithmetic logic are prestored
in memory and under program control act as stimuli to the logic. The
responses of the logic a re compared with prestored correct responses to
determine the status.

Based on previous experience in writing this type of test, it is estimated
that for this application the test would require 425 instructions and 75 con-
stants and temporary storage locations. For a 4 psec add time the test
would run for about 2 msec. The degree of completeness, o r the ability
of this test to detect arithmetic section errors is expected to be high, say
about 99 percent. Of course, proving this would require a thorough anal-
ysis which involves determining likely component failure modes and the
ability of the test to detect the effects produced by the component failure
modes.

The test is performed at a periodic rate. Its frequency would be adjusted
to insure that the worst case reconfiguration time of 5 seconds during
critical phases would be met.

3. Program Control Test

This test checks the ability of the computer to execute instructions in a
legitimate operational sequence. Computer malfunctions which produce
effects that are described by saying the computer is hung-up within an
instruction, within a loop of random size, or wandering aimlessly through
instruction sequences, would be detected. Malfunctions producing such
effects can originate in the control logic of the processor, the memory,
the clocking system, or the power supply.

Implementation of this test requires insertion of built-in test equipment
(BITE) to mechanize a timing device. A s an example, a digital timer
would operate as follows: Under program control, a periodic square wave
is set up and acts as input to the timer which consists of counters and
associated logic. Tolerances are set on the duration of the "high" and
r r l o ~ f ' portions of each cycle of the square wave and on the period. The
inability of the computer to provide this prescribed square wave, which
would occur in the presence of a control error, would be detected by

83

wired-in logic associated with the counter and result in the setting of an
e r r o r flip-flop indicating a computer failure. The period of the square
wave and the associated tolerances would be determined to satisfy the
worst case reconfiguration time requirement of 5 seconds.

From the programming point of view, periodically, an instruction has to
be executed to effect the high portion of the wave, and a prescribed time
later another instruction is executed to effect the low portion.

4. Input Signal Tests

Tests performed on input signals can detect failures due to e r rors in sen-
sors, in data transmission, in input signal conditioning circuitry, or in
transferring the signal through the input section of the computer to either
the arithmetic section o r the memory. Where tests are performed dur-
ing normal operation of the system (on-line) the stimuli are not "canned"
as they a re in the case of arithmetic section tests since the sensors are
not interrupted to provide prescribed input signals. In place of prescribed
sensor values for testing purposes, the validity of these signals can be
tested within the arithmetic section of the processor by a combination of
the following techniques: reasonableness tests, dual redundant inputs,
and BITE. Reasonableness tests use criteria such' as the expected range
and/or rate of the input parameter for error detection. Redundant inputs
allow the disagreement between the inputs to provide e r r o r detections
BITE in the form of input conditioner built-in stimuli under program con-
trol provides a backup of reasonableness tests and redundancy both for
enhancing the e r r o r detection capability and for error isolation. The
redundancy technique is the least desirable due to reliability and power
considerations and would be used selectively, only if a study of the pro-
posed reasonableness tests, BITE, and the criticality of the input signal
indicate it is necessary.

Given that e r ro r s will be detected by the above mentioned techniques, the
isolation problem is to determine if the input device, 1/0 conditioner, o r
computer is the error source. It is assumed that the input device cannot
monitor its own status completely and will require computer participa-
tion for its status determination. It is fwther assumed that if digital
transmission errors represent a significant problem, it would be handled
by simple parity checking. A description of the detection and isolation
process follows.

Included in the program segment requesting an input is the test required
to verify it. If the input is acceptable normal operation continues. If the
input is found to be in error , the error status is recorded in an assigned
bit position of a status word in memory. (Assume one status word is
reserved for each 1/0 conditioner thereby allowing reference in this
description to T/O conditioner status words".) Normal operation con-
tinues, even in this error case, except that the previous value of the input
is used in the computations in place of the present value. At a prescribed
point in the program, the executive looks at the contents of the 1/0 condi-
tioner words. If this is the first cycle in which an error has been detected,
the executive permits performance of at least one more input cycle. Note
that the number of input cycles resulting in error reports should be greater

a4

than one (1) since there is little likelihood that an e r r o r will occur at the
start of a cycle. But, once having occurred, if it is a solid failure, it
will be present throughout all subsequent input cycles and its effect will be
truly represented by the 1/0 conditioner status words.

.. Next, consider the manner in which the 1/0 conditioner status words can be
used to isolate the failure once the failure history is complete. Basically
the process is closely coupled to the function of the failed circuitry. If the
failure occurs in circuitry peculiar to a particular input, only that input
signal will be affected and only one input will be flagged in one of the 1/0
conditioner status words. Such errors are e i ther in the sensor, the trans-
mission path between sensor and conditioner, o r in the conditioner prior to
the point where inputs a re multiplexed. If failures are indicated in more
than one input signal, the failed point must be in time-shared circuitry.
This could be in the conditioner between the point where inputs are multi-
plexed and its output to the computer, the transmission path to the compu-
ter, or in the computer input circuitry. (An additional source could be a
gross sensor error where the sensor provides more than one input signal
and all have been affected. Such specific cases can be checked for by the
executive program if the sensor cannot be depended upon to provide such
information.) In the multiple computer configurationmore than one con-
ditioner is tied to the computer input unit; therefore, e r ro r s in the com-
puter's input circuitry will affect most input signals.

Thus, it can be seen that the number of input signals and their relation to
one another can provide a certain degree of isolation of the error. This
degree of unambiguous isolation is related to the failure rates of the com-
ponents within the isolable boxes that can be associated with each effect.
If all inputs were bad, one would suspect the computer input unit; if the
bad inputs were associated with one conditioner, one would suspect the
conditioner first even though there is circuitry within the computer input
associated only with that one conditioner, etc.

From the programming point of view, each input has associated with it
certain parameters and tests employing those parameters. Tests on
operational inputs are performed at the rate the operational program
requires the inputs. Tests on non-operational inputs such as those sup-
plied by BITE test signals are performed at a periodic rate. Detection
of failures result in status notification by means of 1/0 conditioner status
words in memory. The executive program interrogates these status words
each cycle. A full cycle fault isolation routine is entered after the true
failure history has been recorded in the status words. Isolation to a sen-
sor, an 1/0 conditioner, of the computer input unit is achieved.

5 . Output Signal Tests

In order to automatically detect e r ro r s in output signals, the loop on these
signals must be closed. For this reason, all conditioner outputs are fed
back to conditioner inputs and thereby made available for checking within
the arithmetic section of the processor. A s opposed to input sienal verifi-
cation by means of reasonableness tests, output signals are, known at the
time they are commanded. Therefore reasonableness tests are not required.
Al l comparisons can be done digitally. Thus, for example, the output

85

voltage derived from a digital output word can be brought back into the
conditioner, converted A to D, and the resulting digital input value com-
pared with the original digital output value.

The programming requirements for output signals are similar to those for
inputs. Associated with each output signal is a test which involves execut-
ing an input command for the 1/0 conditioner input channel reserved for the
feedback of the output, and a comparison of input and output digital values.
Test failure results in notification by means of 1/0 conditioner status words
and a possible suspension of this output (note that for input errors past
values were used while accumulating the failure history. The same, of
course, cannot be done for output errors). The executive interrogates the
status words each cycle. When the failure history is completed a full cycle
fault isolation routine is entered and the error is isolated to either the com-
puter output unit or to the 1/0 conditioner.

4.2.2.2.3 External Status Reporting

The status of the multiple computer system is continually reported to the space
crew by means of control panel indicators. In the case of a failure they also provide
the information to expedite off-line repair.

The isolable units are computers, 1/0 conditioners and input devices. A s men-
tioned previously, the need for the computer to isolate input device e r rors is prob-
ably required in addition to its normal status monitoring of status signals generated
by external devices.

The following tests have been described to monitor performance:

1. Memory Check Sum

2. Arithmetic Section Functional Test

3. Program Control Test

4. Input Signal Tests

5. Output Signal Tests

Failures detected by the first three tests imply isolation to the computer and, there-
fore, can be used to control a "computer fail light." The simplest implementation
would be to have the program control test failure activate the light and to have fail-
ures in the memory check sum or arithmetic section test cauee a failure in the pro-
gram control test (as, for example, by executing a halt command in the event of a
failure).

Input tests involve e r ror isolation to either a computer, an ILO conditioner, or
an input device. Output signal teats involve isolation to either a computer or an 1/0
conditioner. In these cases one method of failure notification is to have an 9nput or
output fail Ii@W and a status word dlsplay to indicate the computer input, computer
output, 1/0 conditioner, o r input device as the most likely error source. The exec-
utive program would control these indicators, and in cases where 1/0 ccmditioners
or input devices have failed, but operation of the system can continue (this point will

86

be discussed in more detail in the section on reconfiguration that follows), the exec-
utive is responsible for terminating calculations involving the failed units.

4.2.2.2.4 Reconfiguration

This section discusses the task of reconfiguring the multiple computer system
in the event of a failure. It is assumed that the failure has been detected, correctly
isolated, and reported to the flight crew. Of course a spare must exist. If not,
depending on the failed item, the mission may fail.

From the point of view of determining a reconfiguration plan or strategy, the
mission can be divided into three types of phases: non-critical, critical, and Mars
orbital. The plans for each of these phase types differ because of the speed of recon-
figuration required or desired and because of the allowable status of the system dur-
ing reconfiguration.

1. Non-Critical Phases

During non-critical phases the primary system, comprised of the primary
computer and associated 1/0 conditioners and 1/0 devices, is performing
the required mission functions. The secondarysystem is turned off except
for periodic intervals at which it performs self-checking functions. The
compositionofthe secondary system is determined as follows: First, in
anticipation of becoming active during critical or Mars orbital phases it
contains the secondary computer and associated 1/0 conditioners and 1/0
devices required for the particular phase. Second, in anticipation of a
failure in the primary system it can contain additional 1/0 conditioners and
1/0 devices to form a source of verified spare units.

In the event of a failure in the primary computer, the astronaut would shut
down the primary system. The secondary computer would assume its role.
Physically, either the primary computer would be removed and replaced by
the secondary computer, o r the connector(s) to the primary computer would
be disengaged and connected to the secondary computer. The power to the
ttnewtl primary system is then restored, the system is checked, and then the
mission functions a re resumed.

In the event of a failure of an 1/0 conditioner in the primary system, either
the entire primary system is shut down while repair is effected, or,
provisions may exist to remove the 1/0 conditioner and allow the rest of the
primary system to remain in operation. Physically, the failed 1/0 condi-
tioner is replaced by a "like" 1/0 conditioner from the secondary system,
the new conditioner is checked, and then its mission function is resumed.

Failures in 1/0 devices may be repaired by a method similar to that
described for 1/0 conditioners.

The time required to affect repairs in the manner described above is a
function of the accessibility and mounting of the units, and of the ability of
an astronaut to perform physical repair actions in the environment of the
Mars Mission Module. Extensive data on astronaut repair capability is a
mission function of some current space programs and would be available
for use in developing plans for the Mars landing mission. Present data

87

indicates that space maintenance is feasible in a zero G environment with o r
without a spacesuit. For evaluation purposes, as described in Section 5, it has
been assumed that the space crew can perform repairs within 30 minutes.

Restoration of the secondary system after its equipment has been used to
reconfigure the primary system will be discussed in the section dealing with
backup equipment assurance.

2. Critical Phases

During the critical phases the primary system is performing both critical
and non-critical mission functions and its outputs are controlling the vehicle.
The secondary system is also turned on, performing the critical navigation
and guidance functions in an active standby redundant mode. In addition, it
is performing checking functions on spare 1/0 conditioners and devices.
The time duration of the phase is comparatively short, never being longer
than about 40 minutes.

Failures in the computer or certain of the 1/0 conditioners or devices of the
primary system that affect the critical functions will require rapid reconfig-
uration. In this event, control of the vehicle is automatically passed to the
secondary system by issuance of a logic level derived for the BITE circuitry
associated with the program control error detection of the primary computer.
This circuitry is functionally described in paragraph 4.2.2.1. Basically
the essential event that occurs is activation of the secondary system outputs
and deactivation of the primary system outputs. This concludes the recon-
figuration for a critical failure in the primary system. The time to effect
this reconfiguration is expected to be much less than the allowable maximum
time of 5 seconds. The primary system is then shut down, either automati-
cally, o r manually by the astronaut.

Failures in non-critical 1/0 conditioners or devices of the primary system
result in no immediate reconfiguration of hardware, Instead, the error,
having been detected is reported to the flight crew for repair action to be
performed at the conclusion of the critical phase, and the non-critical
calculations that are affected a re suspended. The rationale for this plan
assumes that the primary system, without the capability of performing
certain non-critical calculations, can still perform more mission functions
than would be performed by the secondary system after an automatic
switchover.

3. Mars Orbital Phase

Thk Mars Orbital Phase requires the maximum storage and speed capability
to perform the mission functions. To accommodate this, the load is shared
by the two computers and associated 1/0 conditioners and devices. The two
systems shall continue to be referred to as the primary and secondary for con-
sistency, even though in this phase neither system is devoted to a standby
or backup role.

In normal operation the primary system is performing navigation and
guidance and a part of the scientific experiment functions. The secondary
system is performing status monitoring, telecommunications, the remainder

88

of the scientific experiments, and minimal navigation and guidance for
backup purposes. By minimal is meant that portion of navigation and
guidance which would be performed by the secondary system in the event of
a loss of the full navigation and guidance function of the primary system,
in order to facilitate subsequent restoration of full navigation and guidance
during reconfiguration.

The manner in which reconfiguration is handled in this phase is contingent
on the availability of a spare for the failed unit.

First, assume a spare is present. Consider the secondary system. A
failure here is handled in a similar way as described for a non-critical
phase failure of the primary system. The only difference is the source of
the spare. It can either be obtained from spares stored, or, from an on-
line configuration i f spares are tacked onto the primary and/or secondary
systems and periodically verified by test programs. Next, consider a
primary system failure. A s part of the normal operating program the
primary computer is transmitting the latest updated navigation and guidance
data to the secondary computer via the intercomputer communication link in
anticipation of a primary system failure and the subsequent performance of
the navigation and guidance function by the secondary system. A s a practical
matter, the secondary computer would store at least two sets of such data;
one being the latest set and the others being the sets prior to it. Then when
a failure cf the navigation and guidance function of the primary system was
signalled, the secondary system can start its minimal navigation and
guidance function using the set of data most likely to be correct. Switch-
over to the secondary system may be made automatic in order to assure the
presence of a good set of navigation and guidance data in the memory of the
secondary computer. If the primary system failure does not affect the
navigation and guidance function, switchover need not be automatic and the
reconfiguration of the primary system is handled similar to that for non-
critical phases. Of course, i f as part of the repair activity it were
necessary to remove the navigation and guidance function, the secondary
system would have to be told to assume that role.

Next, assume that a spare is not available. If a computer failed, the tasks
of the operating computer would be reassigned to perform full navigation
and guidance, reduced communications, full status monitoring, and
reduced scientific experiments. Physically, aside from shutting off the
failed system, reconfiguration would also entail connecting the appropriate
1/0 conditioners and associated 1/0 devices to the operating computer if
they were not already linked there in a standby manner. If 1/0 conditioners
fail, many reconfiguration possibilities exist depending on the commonality
of 1/0 conditioners and the preference of performing certain tasks in lieu of
others.

4 . 2 . 2 . 2 . 5 Backup Equipment Assurance

The basic functions assigned to backup equipment are to enable rapid reconfigu-
ration during critical mission phases in order to enhance the probability of mission
success, and to provide a source cf verified spares generally during non-critical
phases in order to increase system availability.

59

In order to assure the readiness of backup units they must be tested. It is
undesirable to continually test them because of power considerations, and also because
of reliability considerations if it is assumed that the failure rate of equipment varies
directly with i ts usage, Therefore they would be tested periodically.

The configuration of the backup, o r what has been called the secondary system,
is predicated both on the anticipation of a failure in the primary system and on the
expected role of the secondary system.

During the major part of non-critical phases the secondary system contains the
secondary computer, and those available 1/0 conditioners and devices which can be
inserted as spares into the primary system in the event of a failure of the primary
system. The secondary system could consist of a complete duplication of the primary
system if the duplicate set of equipments existed. Where there is commonality of
equipments a s may be true in the case of 1/0 conditioners, one of each type is all that
is required. Where duplicate I/O devices either do not exist or it is not feasible to
connect them to the secondary system, the associated 1/0 conditioners and secondary
computer 1/0 unit can still be tested when a ffloop back" capability is provided to route
1/0 conditioner outputs back to 1/0 conditioner inputs via a special test.cable. Thus
the nature of the backup configuration can be seen to present a certain degree of
flexibility. No attempt to pin it down will be made during this study (for any of the
candidates).

Checkout programs for the secondary sys tem when it is in this "sparing" role
would be organized similar to the operational checkout programs. The program
control BITE would operate continuously. The arithmetic section functional test would
be the same, but can be expanded if required. The memory check sum would be
included with each test program segment and could be expanded to check sections of
memory and processor controls not specifically needed by the test programs. The
input/output test would depend on the 1/0 configuration. The entire testing could be
initiated on-demand by the operator and be continually recycled. The operator can
be assisted by having the primary system mark time between checkouts and indicate
to him when to initiate the checkout of the secondary system. The secondary system
can mark time to indicate when the required number of test cycles have been com-
pleted and when shutdown of the secondary system is to be performed.

In a prescribed period prior to entry to a critical phase the secondary system
must contain at least those equipments necessary to enable the secondary system to
take over the primary system role in the event of a primary system critical failure.
This will allow the required rapid reconfiguration during critical phases.

In these time periods the checkout programs for critical equipment may be
identical to those performed by the primary system for critical equipment. Checks
of spare 1/0 conditioners and devices may be included as part of background
calculations.

During the Mars Orbital phase, with the secondary system active, operational
type testing would be employed. Spares can be tested both in the primary and secondary
syetem if the required computing power is available.

Restoration of a full backup capability, during any portion of the mission,
whether it be due to a failure in the primary system for which the secondary system
eupplies the spare, or whether it be due to a failure in the secondary system itself,

90

ia accompliehed manually by the flight crew. Performance of the repair actions is
similar to that previously described for a primary system failure in a non-critical
phase.

4.2.2.3 Software Considerations

The computational requirements of this mission were used to determine certain
basic software design criteria. No matter which type of computer system is finally
selected these criteria will still be valid.

1. Computational Characteristics

There are a number of obvious features of the required computations that
influence the software approach.

The greatest difference between this mission's needs and that of most
present-day projects is the wide variety of computational classes. Precise
calculations for navigation and guidance, large data processing functions
and others ranging in between these extremes, all with varying timing
constraints, must be concurrently executed.

There are certain processes that must be performed throughout the entire
mission and others that will be done once. Additionally, the duration of
the mission and the nature of program longevity imply that unanticipated
computations will be added to the work load of the computer system.

Another characteristic of these requirements is the wide range of computa-
tional loads between phases. In actuality, even within a given phase the
load can vary quite radically.

2. Software Criteria

In view of these characteristics a number of conclusions concerning the
nature of the software can be made.

3. Dynamic Resources Allocation

The processor, memory, and 1/0 resources of the computer cannot be
pre-allocated to all of the functions to be performed during the mission.
A means for providing some degree of dynamic usage of these resources
must be employed.

If the systemwere to be "hard-wired, the size of the computer would be
prohibitive. By accepting the dynamic approach the sizing problem is
reduced to consideration of the maximum needs at any one time during the
mission, in this case, during the Mars orbital phase.

4. Flexibility

In order to permit handling of unanticipated programs, and also to effectively
process constantly changing program mixes, it is necessary to have an
executive scheduling algorithm that can be externally controlled through
program requests.

91

4.2.2.3.1 General

The functional design of the support programs, which are the Program Sequencer,
the Reconfiguration Program, the Request Processor, the 1/0 Supervisor, and the
Self-Test Program, was influenced by the following factors:

1. Computational requirements - The computational loading during different
phases varies to such a degree that the computers' functional configuration
must have flexibility. The periodic, o r cyclic, nature of many computations
must be maintained. The system must be capable of processing unanticipated
programs.

2. Availability criteria - A positive means for detection of e r ro r s within the
computer system is essential. Fault isolation of 1/0 e r ro r s must be
performed. Upon failure, a means for smooth transition to a backup
configuration must be available.

3. Programming flexibility - The software development must not be hindered
by an excessive number of restrictions, since in-flight programming might
be required. A positive means for program control must be incorporated.

Preliminary estimates of the cost of these support programs (detailed in
4.2.2.3.8) are less than: 3000 words and 10, 000 ops/sec. Overhead in the computa-
tion programs for interfacing with the support software will be less than 1 percent.

4.2.2.3.2 Concepts of Program Design

1. Program Design Conventions

In order to permit efficient operation of the total software system, the
following conventions a re imposed on the design of computational programs:

a. All programs will be relocatable and will be permanently stored in
mass storage.

b. External variables, which are all data used by more than one
computational program and all data required for restart after
reconfiguration, will be assigned fixed locations. For data used
by more than one program, this provides for ease of relocating these
programs particularly during reconfiguration between mission
phases (if fixed locations were not assigned, moving one program
could require going through other programs and recording new
data location assignments). For data required for restart after
reconfiguration, this facilitates inputting and outputting of such
data when it is required in a number of different programs.

c. A computational program's internal variables will be segregated from
its code and constants. Utility programs cannot have internal variables;
the programs which call it must supply data areas and references.

d. Periodic programs will have a fixed execution time, and periods must be
integer multiples of all higher frequency periods.

2 . Scientific Experiments Execution
A special scheme for scheduling the execution of the scientific ex-
periments support programs will be implemented. Attempting to

92

schedule them as periodic programs is too rigid in view of the following
considerations:

a. A fixed frequency during a phase would be unrealistic. The rate at
which data is input from a particular sensor would be alterable so that
the associated data processing function can signal for an increase or
a reduction in the sampling.

b. At uncertain unpredictable times the data from a sensor may be .of nil
value; for instance, on the dark side of a Mars orbit some TV reception
might be worthless. This is also the case when a sensor malfunction
is discovered.

c. In the Mars Orbit Phase the reconfiguration from the full computer
system involves going to a reduced configuration. The associated
reduction in the computational load i s achieved by reducing the
scientific experiment loading; the preferred method would be to
continue most experiments with reduced data sampling rates.

In examining these programs, it can be seen that they really consist of several
distinct parts (represented in Figure 4-9). The data is input from a sensor at some
frequency and then stored in the mass memory. When a sufficient backlog has been
accumulated the data reduction processing is performed. The end result is an output
for either telemetry or console display. In order to achieve the objective of optimum
efficiency along with flexibility these parts are considered as separate programs.

INPUT DATA FROM
SENSOR AND PLACE

BUFFER AT P (SAME
IN MASS STORAGE

FREQUENCY)

. .

"""""" 4

r------
t
I

I
I

I WHEN SUFFICIENT It ""A

I I DATA IS IN THE BUFFER,
IT IS PROCESSED FOR
TRANSMISSION TO I

r----- -#

GROUND t --e 1

I
L"", .I

Figure 4-9. Scientific Experiment Program

93

MASS STORAGE
1

1 DATA
BUFFER

/ CONSOLE BUFFER

7
L

TELEMETRY BUFFER

ogical Representation

The program for input of sensor data and buffering on the mass storage is
executed at the highest potential frequency for the data sampling. The actual sample
rate is controlled by setting a READ/NO READ flag under control of a frequency
count. A NO READ setting would cause suppression of the buffering operation; not
the sensor input operation; thus, reasonableness testing of the sensor data would be
performed at a constant rate,

The data reduction program i s not performed periodically, but as a request
program when a sufficient backlog has been buffered. A special Data Buffer Monitor
program is executed periodically to determine the status of the various buffers. When
the loading level for a buffer is high enough, the appropriate flag in the Request Board
(described in 4.2.2.3.5) is set. The measurement used for the ith buffer is the
following formula:

bi - di
t. =-
1 r. ’

1

where

bi = the size of the ith buffer.

di = the load in the ith buffer.

ri = the loading rate for the ith buffer.

thus

ti = the time until the ith buffer will overflow.

When this measure is less than a set limit, the associated data reduction program
is requested. In order to prevent overflow, a priority is assigned to the program when
the time-to-overflow is less than a second present limit.

Thus, when experimental data is sparse the computational support is infrequent,
but when large data rates are encountered the same scheduling mechanism permits
full processing capability.

4.2.2.3.3 Program Sequencer

The programs that are executed during any one phase are classified as follows:

1. Periodic - Execution is cyclic and each iteration occurring at a prescribed
frequency.

2. Background - Execution is cyclic with no timing restraints.

3. Anticipated Request - Execution is on command; during execution certain
subprograms may be periodic.

4. Unanticipated Request - Execution is on demand.

94

The basic problem is to insure that all periodic programs execute properly. The
solution, which is dependent on the rules for programming periodic programs is to
sequence within a fixed time-interval cycle; the length of the interval being equal to the
highest frequency of the periodic programs. The periodic programs are ordered from
most frequent to least frequent, bo, pl, . . . , Pn) .

counter, initially set to the programs' frequency, is zero the program should be
executed. The programs are then executed in order of frequency. To permit time-
interval cycling with low overhead, an interrupt system is employed.

At each cycle a counter associated with each program is decremented; when this

A s an example, Figure 4-10 shows a partial time history of the sequence of
execution of the following.

Program Frequency Execution Time

a 1 sec. 0.25 sec.

b 2 sec. 0.25 sec.

C 4 sec. 0.5 sec.

d 4 sec. 0.25 sec.

e 8 sec. 1.0 sec.

f 8 sec. 0.25 sec.

Notice that program e could not finish execution before the end of the second
interval. It was interrupted so that programs a and b could be properly sequenced
and then was resumed. The shaded areas in Figure 4-10 are time gaps where no
periodic computations a r e scheduled. This time is used for the background and request
programs.

If no requests are being processed the background programs are executed in a
cyclic sequence. The request programs are executed on a first-in - first-out basis
with the ability to assign priorities. Figure 4-11 shows the organization of the Request
Queue; Figure 4-12 lists the priorities and the queue alterations that are made to
accommodate each.

The structure of entries in the Periodic Schedule, Request, and Back-
ground tables is given in Table 6-2 of Section VI. The process that occurs at each
time-interval interrupt is illustrated in the executive flow diagram of Section VI, 6.3.

In order to maintain the frequency of periodic programs, ffdummy't periodic
programs corresponding in execution timing to the periodic computations of anticipated
request programs are continuously executed. Also, within periodic programs there
will be conditional program paths that may o r may not be executed on any one cycle.
Both of these situations create "dead time."

95

I I I I I I I I I I
0 1 2 3 4 5 6 i ;I ;

W ua

Figure 4-10. Sequence of Periodic Program Execution

CURRENT REQUEST BEING PROCESSED

NEXT REQUEST

A2

1 1 “ANYTIME + SUBCHAIN
? 1 “ANYTIME + SUBCHAIN

Figure 4-11. Queue Chain

Figure 4-12. Priority Actions

97

Dead time can be executed a s a delay, but this would lead to poor computer
utilization. Therefore, a FILL function has been designed. This function is employed
by setting the clock of a secondary interrupt system to the length of the dead time and
transferring control to that portion of the executive which fills normal time gaps. The
time-interval, or primary, interrupt system will override and reset this system
whenever it is invoked.

Input operations can lead to some dead time also. This is of such short
duration, however, that use of the FILL function is prohibited. Thus in most cases a
simple delay must occur. For many periodic programs the first action is the input of
parameters; to avoid time loss here, a special procedure is employed. This consists
of executing a program specified "early 1/Ot1 code prior to performing executive
housekeeping and program initialization functions.

Unanticipated request programs are sequenced as though they were anticipated,
except that some computer reconfiguration is always involved. This subject is covered
in the next discussion.

4.2.2.3.4 Reconfiguration Program

Reconfiguration will be required to handle mission phasing, failure recovery,
and unanticipated requests in all phases. Following are the different means employed
to reconfigure:

1. Phased Restart - This means is employed when a completely new program
load is required; for instance, when a single computer must overlay a
current phase with the next phase. This is accomplished by executing the
loader as the highest priority request program and maintaining all periodic
computations in the current phase until the new phases' periodic programs
are loaded, along with any associated special purpose restart programs.
At this time the new periodic programs begin executing and their restart
programs are functioning properly, the remainder of the programs for the
phase are loaded; background and anticipated request, which overlay the
restart programs and any residual from the old phase. Thus a smooth
transition from phase to phase is achieved.

2. Cold Start - This means is used when a computer is turned on. It operates
essentially the same as a Phased Restart except that there are no "old"
periodic programs to be executed.

3. Request Overlay - Whenever an unanticipated request is to be handled, the
program must be loaded. This is accomplished by loading into unused core
and overlaying lower priority anticipated request programs. If there is not
enough room for this, a command from the console is required to either
turn on the secondary computer, upgrade the priority, o r cancel the request.

98

In order to permit these operations, the memory of the computer ie organized
in a particular manner as represented in Figure 4- 13. Thus the load mofile for each
phase must group its programs according to classification. Figures 4-14 and 4-15 are
general flow diagrams of these reconfiguration processes. Further details on the
reconfiguration programs may be found in the executive flow diagram in Section VI, 6.3.

The loader is a program that uses load profile information residing in mass
storage - the following tables are used:

1. Program Load Profile - Contains the name of the program, its location in
mass storage, its size, check sum information, periodic frequency (if any),
early 1/0 entry (if any), program entry, and pointers to the load profiles of
any utility programs it uses.

2. Phase Load Profile - Contains the phase name, and pointers to the load
profiles of the programs for the phase. This list of pointers is grouped so
as to delineate periodic, background, and anticipated request classifications.

Since the code in the programs use register dependent addressing no address
construction is required. Therefore, the loader merely fills in the appropriate
Program Sequencer tables, determines a program origin, and inputs the program
code from mass storage to main memory.

99

PERMANENT LOCATIONS PERIODIC PACK
I

RESTART DATA EXECUTIVE PROGRAM I CONTINUOUS PACK
I
I

I
I

INTER-PROGRAM DATA ; EXECUTIVE TABLES I . NON-CONTINUOUS PACK
I
I
I
I
I

1

I 1 I
I I

I

I
I
I

I -(EMPTY)
I
I I
I I I

I

I

I
I
I I

1
I

I A

\ J

FIXED

! !
7

Figure 4- 13. Memory Allocation

A T PHASING SELF-START

I

" r----- 1
SELF- LOAD ROUTINE
BECOMES 'NOW' REQUEST
PROGRAMS

PERMANENT PART OF I EXECUTIVE I
L""J

-
I " I-"" 1

PHASE DEPENDENT LOAD-
PROFILE DATA IS LOADED I HIGHEST CORE

PLACED IN I
L"" J

OLD PERIODIC PACK IS
COPIED IN CURRENT NON-
CONTINUOUS PACK REGION
AND A TEMPORARY {Pj} SWITCHED IN
TABLE IS CREATED

TEMPORARY {Pi)IS

1 RESTART PROCRAMS FOR 1

I P- PERIODIC PROGRAMS ARE
LOADED AS {Bj}

I

A T COLD
SELF-START

DU"Y{Pj}IS a EXECUTIVE SELF-
INITIALIZATION IS
EXECUTED

NEW TABLE AREA FOR
THE EXECUTIVE AND NEW
PERIODIC PACK ARE
LOADED INTO PERMANENT

I I AREA AND NEW {Pj}
TABLE IS CONSTRUCTED

n NEW {Pj)IS SWITCHED IN
AND LOADER GOES TO FILL
FUNCTION UNTIL RESTARTS
HAVE FINISHED

ARE LOADED AND THE NEW {RjAND {Bj}
NEW CONTINUOUS AND NON-CONTINUOUS PACKS

TABLES ARE GENERATU) .
I """""

MODULE TURN-OFF FLAG IS SET IF
NON-CONTINUOUS PACK + EMPTY REGION I I i .12K
I""""1

Figure 4-14. Reconfiguration Process

101

c A.r REQUEST ADDITIONAL LOAD

LOAD PROFILE FOR
REQUESTED PROGRAM
IS BROUGHT IN

P

N
0

I

+ EMPTY REION
> DORMANT NON-CONTINUO 5 EMPTY REGION

+ E M P T Y REGION

FOR SPECIAL LOAD
SHORT 2ND COklPUTER REORGANIZE

NCIK-CONTINUOUS
PACK IF NECESSARY

OVERLAY LOAD REMOVE OVERLAID
PROGRAhl AND PROCR4hqS FROM -
PLACE IN IRj)

r J

Figure 4-15. Reconfiguration Process

4.2.2.3.5 Request Processor

Requests for additional computations contained in anticipated or unanticipated
request programs are made by setting a flag in a special Request Board table con-
sisting of a string of byte flags corresponding to all possible requests; there i s room
in the flag to specify priority. The two primary sources for requests are the
following:

1. Program generated requests - Whenever a computational program,
on the basis of a test, determines that some special processing must
be done, it merely sets the appropriate flag in the Request Board.

2. Console requests - A request can be generated via console message
input. One of the request programs always in memory is the Console
Message Processor, described below. A periodic program, the Console
Interrogator, is continually checking to see if a message has been
presented on the console. If so, the flag in the Request Board for the
Console Message Processor is set with the highest priority.

The Console Message Processor verifies messages, checks their validity, and
takes that appropriate action. On the mass storage there is a list of request program
names cross-referenced to the Request Board. This list is used to determine which
flags are to be set.

Before the Request Queue is processed by the Program Sequencer, another
program, the Request Monitor, is executed. This program scans the Request Board
and, if a flag has been set, alters the Request Queue and, when needed, initiates
Request Overlay. The name of the request program is obtained from the cross-
referenced list mentioned above.

4.2.2.3.6 Inpnt/Output Supervisor

In order to provide a complete means of input and output with dynamic
conditioner/sensor configurations, a standard system is provided.

The key feature is a Conditioner/Parameter Logic Table which represents the
configuration of the 1/0 conditioners and the sensors, or parameter lines, via cross-
referencing. When a sensor is connected or removed from a conditioner, or when
a conditioner is added or deleted, this information must be transmitted to the 1/0

. Supervisor (as a console message) so that this logic table can be updated.

In order to reduce overhead in exercising I/O, the following utility routines
are provided:

1. GET - The computational program specifies the parameter desired, the
number of inputs, the location for its storage, and reasonableness test
information. This routine then uses the Conditioner/Parameter
Logic Table to determine the source of the input, issues the appropriate
1/0 commands, performs reasonableness tests, and transmits the
data to storage.

103

2. PUT - The computational program specifies the parameter being output,
the number of outputs, and the location of the output data. This routine
finds the proper output line, issues the appropriate 1/0 commands to
transmit the data, and verifies the output.

4.2.2.3.7 Self-Test Program

A number of means are used to detect errors in the computer system. Regard-
less of what an actual malfunction is, the real purpose of the self-test process is to
detect them and classify them as one of the following:

1. Computer failure - ~ n y memory, processing unit, I/O unit, or critical
1/0 source malfunction is considered as a total computer error and a
backup system must be implemented.

2. 1/0 failure - A malfunction in a single conditioner o r a single 1/0 source
that is performing non-critical functions causes that particular component
to be blocked off. The remainder of the system continues performing in
this reduced status.

There are a number of techniques used to detect errors. One is the Pulse
Stream Test. A periodic program (executed at the highest frequency) alternately
sets and resets a pulse flip-flop; this device is hardware monitored and, if the
frequency is not maintained (within some tolerance), a computer failure signal is
transmitted. Thus, logic sequencing malfunctions, closed loops, and program halts
will be detected. Other self-test processes signal the discovery of e r ro r s by
executing a halt command which causes a pulse failure.

Another technique is the use of check-sums. Since the programs are organized
so that code and constants a r e blocked and check-sum data is available in the Program
Sequencer tables, this check is made on a periodic basis on selected programs.

There is an Arithmetic Unit Test performed periodically to detect malfunctions
in that processor’s logic.

Input errors are detected on the basis of reasonableness tests, e. g., magnitude,
value range, and parity. Output e r ro r s are detected by hardware feedback and a full
comparison test. Conditioner e r rors a re a l so detected by issuing test values through
special hardware feedback loops from a periodic program; this test determines if
the entire conditioner is good o r bad.

A t the beginning of each time-interval cycle a test is made of the Conditioner
Status Words, which is where e r ro r notification is made by the tests just described.
If any 1/0 e r ro r s have occurred, a flag is set and at the start of the next cycle a
comprehensive test of all the status words is made; this is done to detect multiple
errors.

If a single source e r r o r was detected, that sensor is blocked off. If multiple
source errors in only one conditioner o r a single periodic conditioner e r r o r was
found, that conditioner is blocked off. If error8 are detected in more than one
conditioner, a halt is executed (indicating computer failure,

104

This covers the self test that is performed by software methods. Hardware
methods may be used in addition to this. The hardware methods will simply require
the monitoring on a periodic basis of failure notification signals set by the hardware
failure detection equipment.

4.2.2.3.8 Cost of Support Software

The estimates in this section have been derived from a set of formulas involving
the following parameters (the assumed value is included). The maximum phase is
expected to be the Mars Orbital Phase (phase 12).

1. nf number of periodic programs in phase

n = 20 f max

2. nr number of anticipated request programs in phase

n = 30 r max

3. % number of background programs in phase

"b rnax = 10

4. nu number of utility programs in phase

n = 1 0 u max

5. nc number of 1/0 conditioners

n = 20 c rnax

6. ns number of 1/0 sensors

n = 100 s rnax

Another assumption is that all periodic support functions will be executed at
0.05 seconds. In the Mars Orbital Phase these estimates are for each computer.
The table in Figure 4-16 gives the cost of each part of the support system.

105

Support Function Storage weed (ops/sec.)

Formula Max.

)Program sequencer
Periodic
Request
Background
Linkage Support

Reconfiguration Program
Phased Restart
Cold Star t

Request Overlay

Hequest Processor

I/O Supervisor
Cond. /Parm. Logic
Status Check
PUT, GET

Self-Test Program
Check Sum

Arith. Unit Test
Pulse Stream
1/0 Teats

12nf + 50

6nr + 50

4nb + 20
2nU + 20

nc + 4ns i 40
2nc + 40

nc + 100

2000

*

600

*

6340
(15 00)

(6000) (At 0.1 frequency)

(40)

(800)

Totals 2836 8940

Figure 4-16. Software Colrtr

106

4.2. 3 Modular Multiprocessor

4. 2. 3 1 Organization

4. 2. 3. 1. 1 General Considerations

The computational and reliability requirements are the same as those given for
the multiple computer. This of course means that the general processor features
discussed earlier apply to the multiprocessor. It should also be noted here that the
multiprocessor was the candidate chosen for further design; as a result a thorough
discussion of its features and operation is given in chapter 6.

The multiprocessor has three 12K memory modules, two processor modules,
and two I/O modules with full intercommunication between the memories and proc-
essors and between the memories and the input/output modules, these are the modules
required to meet the maximum computation requirements. Again, since there is a
need to continue operations while any one of the modules is in a state of repair (during
critical phases), there must be at least two of each type of module. The Multi-
processor structure is shown-in Figure 4-17. The ability to expand the system to
four memory modules, three processor modules and three 1/0 modules is also
included as shown by dotted lines in this figure. Further expansion would require
addition of a separate multiprocessor system with an 1/0 link to the original system.
This approach is taken due to the fact that expansion of the original system beyond
3-4-3 would require so many interconnections that the system may become
impractical.

This organization offers the ability for any processor to use any memory module
for either instruction or operand storage and likewise any input/output module (through
communication to any memory module) for input/output operations to the desired sensors.
Each module can interleave communications with any of the other modules in any
sequence. It is possible.for example for processor P1 to be executing an instruction
sequence from memory M and receiving its operands from memory M only. Essentially
the modules can operate iddependently of and simultaneously with each other.

Communication may be restricted between modules by the use of lockout features
that are incorporated in the design. These lockout features allow a processor to set a
lockout in a selected memory to prevent any other processor from using that memory,
the lockout feature in the input/output modules is also operated similarly. This feature
allows the modular multiprocessor to 'operate essentially as a multicomputer during
phases when critical computations a re being performed in a redundant manner.

each processor module functions independently of the other processor modules in a
conventional manner. The processors request memory cycles accordine to their own
internal timing, the granting of a memory cycle may take only several nanoseconds if
the memory is free or up to several microseconds if other modules are granted access
first. The memory modules communicate with all of the processor and 1/0 modules.
These modules request memory cycles and are granted cycles by the scanning circuitry
in each memory module. The scanner is a simple round robin type of scanner for
choosing which processor or I/O module will receive the next memory cycle. I t

2

The operation of each of the modules is discussed in detail in Section VI. Briefly,

107

operates as an asynchronous counter and is therefore capable of scanning all request
lines in much less than 1 bit time. The 1 / 0 modules operate on instructions received
via a memory module. They receive requests for 1/0 operations from the memories
and contains scanning circuitry similiar to that in the memories to choose which
memory request is honored. The 1/0 module also generates requests for memory
cycles when it has information to transmitt to a memory. The sensors will normally
be connected to the 1 /0 through conditioners on serial links. However, the bulk
storage device will be connected to each of the 1/0 modules by a parallel data link.
The I/O module contains the capability for 1 /0 operations with the bulk storage unit
and any of the sensors simultaneously.

BIT
I/Oi

I
SERIAL I

SENSORS

Figure 4-17. Multiprocessor

108

The proper use of this computer system during the various mission phases is
discussed later in this section. Very simply, during Non-Mars non-critical phases,
one processor, one memory, and one 1/0 module are in operation and the second
memory comes into operation periodically. During the critical phases, the second
processor and the third memory module plus the second I/O module are brought into
operation. These latter modules lock out all requests from the primary processor
(they are also locked out of the primary system). This means that the system oper-
ates in a manner very similar to two separate computers and, as a result, is able to
guarantee reconfiguration within the five second time constraint. During Mars-
Orbital operation, all modules in the system are in operation and all communication
lines between the modules are allowed. Thus, fu l l advantage can be taken of the
multiprocessor structure.

The trade-offs involved in deciding the size, speed and numbers of each type of
module in the system are essentially the same as those given for the two computer
approach. The interesting point to notice is that the multiprocessor organization only
has three 12K memory modules whereas the multiple computer has four 12K memory
modules - two in each computer. The multiprocessor organization was able to save
this 12K module due to its full inter-communication capability. During Non-Mars
Orbital computations 20K is needed in a number of cases. This can be provided by
two of the memory modules operating with one processor. The third memory module
comes on and operates with the second processor during critical Non-Mars Orbital
phases. In this way, all the Non-Mars Orbital memory requirements are easily
satisfied. During the Mars Orbit, 30K of memory is adequate; a s a result, three 12K
modules will do the job in all phases. This was not possible in the multiple computer
scheme since each processor did not have access to all the memory modules in the
system, and, therefore, each processor'had to be given two 12K modules.

The processor's speed requirements are also approximately the same as for the
multiple computer case; a s a result, MOS-SOS technology can again be used for the
implementation of a 250,000 short operation per second processor.

The power supply for this candidate will be distributed to each board just as for
the multiple computer.

The computer configurations for the multiprocessor during the various mission
phases are tabulated below.

Phases 1, 2: Processor one, I/O one, memory
module one

Phases 3, 5, 6, 8, 9, 10, 11, 13, Processor one, I/O one, memory
15, 16, 18, 19, 20: module one; processor two, r/O two,

memory module two-active redundancy

Phases 4, 7, 14, 17:

Phase 12:

Processor one, I/O one, memory one
on continuously, memory three on
intermittently.

Processor one and two, I/O one and
two, memory modules one, two and
three.

109

4.2.3.1.2 Processor, Memory, and I/O Structure

Since the processor has all the features given earlier and also carries out
250.000 operations per second, it is basically the same as that given for the multiple
computer. However, the need to communicate with three separate memories and two
separate I/O units requires some extra flip-flops and gates and a fairly large number
of extra lines. The extra flip-flops are the following: the program counter, and the
nine index-bank registers are all increased to 16 bits. The control flip-flops are now
increased to eighteen. This gives a total of approximately 330 flip-flops for this
processor. This processor would also take one to two chips for its implementation in
MOS/SOS circuitry. In order to get a rough feeling for the number of lines necessary
for implementation of the multiprocessor an approximate line count from the memo-
ries to the processors and I/O units is presented in Figure 4-18. The specific inter-
face lines in the count are discussed in chapter 6; however it is presented here in
order to give a first cut comparison between the multiprocessor and multiple computer
intercommunications. It should be noted from the figure that the multiprocessor
requires almost three times as many interconnections as the multiple computer.

The use of a two-way driver/receiver on the data lines provides a good line
saving; however as the number of modules in the Multiprocessor increases the number
of lines necessary to provide fu l l intercommunication becomes very large. Therefore,
as mentioned earlier, intercommunication should be restricted if for any given mission
the number of necessary processors gets beyond three and memories beyond four.

The memory hardware is again almost the same as that for the memory in the
Multiple Computer candidate. However there are a few extra registers and interface
circuitry chips along with a large number of extra lines. The primary difference is
that there are three 12K modules, each one operating as a separate memory; whereas
in the Multiple Computer there were two 12K modules per computer and both of these
together acted like a 24K memory. This simply means that in the multiprocessor
each 12K module must have not only the word and bit circuitry listed for the multiple
computer 12K module but also the timing and registers listed for each 24K memory.
This is not a significant increase in the hardware associated with a 12K module. The
mutliprocessor memory modules must also have lockout hardware and a six bit
scanner (2 extra bits provided for expandibility) to choose which processor or J/O unit
receives the next memoly cycle. This extra hardware amounts to approximately nine
extra MOS/SOS chips. (With the development of bigger packages this could be reduced
to four or five arrays.) The lockout hardware consists of a flip flop for each proc-
essor and I/O module and some gating to set these flip flops. The processors have
an instruction that sends a signal to the appropriate memory in order to setup the
lockout so that only this processor and a specified I/O unit can use the memory. This
hardware is used to protect the memory modules from an errant processor during
critical phases and also to provide undisturbed computing for periodic computations.
In other words, during critical computations one processor operates with one of the
memories and I/O units while the other processor operates with the other two memo-
ries and I/O unit. Each processor locks the other out of its memory (or memories)
and I/O unit. This lockout enables each section of the multiprocessor to determine
accurately whether it has failed o r not. After a failure, reconfiguration can then be
carried out easily within the 5 second maximum time. This lockout feature is also
useful for periodic computations. When a processor is executing a periodic computa-
tion with.a memory it does not want to be interrupted repeatedly by another processor
since this.would lengthen the periodic computation and possibly have an adverse effect
on accuracies. Locking out the other processor during the short period while a
periodic computation is in execution eliminates this possibility.

110

MULTIPROCESSOR

48

p2 p1 p2

so

EACH MEMORY HAS APPROXIMATELY

"PLINEs48

&I/O LINES 50

TOTAL PER 12K 98

TOTAL PER SYSTEM 294 LINES

MULTIPLE COMPUTER

I MEMORY 24K I

EACH COMPUTER HAS 49 LINES
TOTAL PER SYSTEM 98 LINES

Figure 4-18.. Approximate Line Count

111

The I/O structure for the multiprocessor is basically the same as that described
for the multiple computer. The only difference is that the 1/0 modules are available
to a l l processors through the memories. This can increase the wait for I/O variables;
however the programs can be arranged to minimize queuing at the 1/0 units o r memo-
ries. In particular during periodic computations a processor memory and 1/0 unit
work together and lock the other processor out. The lockout hardware in the 1/0 is
exactly the same as that in the memory and in fact is also used in the same manner
during critical phases. The program scheduler using the Real Time Clock and call
of I/O variables from the header of each program will be used here as explained for
the multiple computer. The 1/0 registers are the same as those listed earlier except
for the addition of three lockout flip-flops, a 3 bit memory request scanner, interface
circuitry for up to four memories, a few control flip-flops, and the increase of
the memory address counter to 16 bits. This gives a total of 150 flip-flops. One
MOS/SOS chip will easily handle this. A diagram of the 1/0 unit hardware and a
discussion of its operation is given in Section VI.

4.2. 3.2 Failure Considerations and Reconfiguration

The introductory remarks and basic guidelines given in Paragraphs 4.2.2.2 and
4.2.2.2.1 for the multiple computer candidate apply equally well to this candidate,
so they need not be repeated. Therefore the discussion will begin with e r r o r detection
and isolation tests. Recall from the discussions on the multiple computer, that soft-
ware approaches to failure detection are considered here. Since the multiprocessor
was the selected candidate, a hardware approach will also be considered in Section VI.
It should also be noted that due to considering the software approach first, many more
problems associated with reconfiguration are uncovered.

4. 2. 3.2. 1 Erro r Detection and Isolation Tests

The following paragraphs describe the tests required to insure timely indications
of the multiprocessor status during the mission.

1. Processor-Memory Tests

The memory check sum, arithmetic section functional test, and program control
test, as described for the multiple computer system, would also be the primary tests
for detection of e r ro r s in memory or processor modules of the multiprocessor con-
figuration. The nature of these tests need not be described here again.

In the multiprocessor configuration the requirement has been established to
isolate errors to the processor or memory. The above tests provide this capability
only to a limited extent. For example, a processor arithmetic error can be isolated
to the processor by executing the arithmetic functional test twice, once from each of
two memories. Normally the test would be executed the second time only upon failure
of the first test. Similarly, a memory failure is isolable by a check sum where the
memory is an operand source, not an instruction source, for two processors. Where
a memory is an instruction source at the time of its failure the program control test
will detect the error, as it will if the processor contains a control error.

The approach chosen to isolate errors betweer ̂memories and processors (and
between processors and 1/0 units too) generally takes advantage of the fact that isola-
tion need not be instantaneous and that the space crew is available to perform pro-
cedures as required for isolation subsequent to e r r o r detection. The penalty of this

112 I '

approach is that more equipment than otherwise necessary may be placed in a tfdowntt
condition at the time an e r ro r is detected and, of course, also that more crew partici-
pation is required. However, an analysis of the mission success and availability
requirements shows that those requirements can be more than adequately met with
this approach. The alternative is to add redundant hardware such as memory parity
checking and arithmetic coding schemes.

In the section on reconfiguration the procedures for isolation of processor and
memory failures will be discussed in some detail.

2. Input, Output Signal Tests

The basic nature of these tests for the multiprocessor is similar to that
described for the multiple computer system. That is, reasonableness tests and BITE
circuitry can be used to check input signals, and output signals are checked by looping
them back into the computer. The results of the checks are recorded in I/O condi-
tioner status words and these in turn are checked by the full cycle fault isolation
routine to isolate the failure.

The new problem that arises in the multiprocessor is the ability to isolate
e r rors between processors and I/O units. Generally, certain processor failures,
and 1/0 unit failures, will result in the same conditioner status words. The isolation
ambiguity is resolved by taking advantage of the built-in flexible communication paths
between each of the processors and each of the I/O units. Thus, one processor can
attempt to talk to two I/O units, o r two processors can attempt to talk to the same 1/0
unit. The implementation of this test is dependent on the multiprocessor configuration
at the time of the failure. As such it will be further discussed in the section dealing
with reconfiguration.

4. 2. 3, 2. 2 External Status Reporting

The status of the on-line units of the system is continually reported by means of
two sets of control panel indicators. Each set is controlled by a processor. In case
of a failure the indicators either flag the failed module, o r flag a trouble area which
forms the basis for the initiation of further tests to isolate the failure. The isolable
modules are memories, processors, I/O units, conditioners, and input devices.

Each set of indicators consists of the following:

computer f a i l light

processor - memory lamp

processor - I/o unit lamp

conditioner lamp

input device lamp

numeric readout

113

The computer f a i l light is controlled by the BITE circuitry for the program
control test of the associated processor. Recall that the BITE circuitry is installed
here because the computer cannot be relied on to actively report its own status.
Errors reported by this lamp implicate either the associated processor o r a memory.
All other indicators represent the situation where the prcjcessor has been able to
actively make a decision, These other indicators are meaningful only i f the computer
fa i l light is off. The indicators are tied to discrete outputs from the processor and
are set by the program when certain errors are detected. As implied by their names,
the fault may be in the processor-memory area, pr0cesso.r-1/0 unit area, or more
definitely, a conditioner o r an input device. The numeric readout is associated with
either of the 4 lamps that are lit, further specifying the failed unit or most likely
failed unit, in a prescribed coded form.

Normally, failures detected by the program control test, arithmetic functional
test, and memory check sum will be reported by either the computer f a i l light, o r the
processor-memory l amp and numeric readout. Failures involving input o r output
signals are reported by either the processor-1/0 unit lamp, the conditioner lamp, o r
the input device lamp. The specific conditioner o r input device is reported on the
numeric readout.

Further details on how this failure notification system is used is given in the
succeeding sections on reconfiguration and backup equipment assurance.

4. 2. 3. 2. 3 Reconfiguration

This section discusses the task of reconfiguring the multiprocessor after a
failure has been detected and reported to the space crew. It will be shown that, as
compared to the multiple computer system, the multiprocessor affords an inherently
higher probability of mission success and higher system availability. The former is
achieved by being able to withstand selected multiple failures during critical phases.
The latter is achieved mainly by eliminating the need to include module replacement
time as a part of reconfiguration time during non-critical phases for certain failures.

As in the case of the multiple computer system the reconfiguration plan is
based on the type of phase in which the failure occurred; either non-critical, critical,
o r Mars orbital.

Figure 4-19 represents the general multiprocessor configuration. The nomen-
clature given therein will be used throughout the discussion.

1. Non-Critical Phases

During non-critical phases the primary system consists of M1, P1, 1/01,
C11, . . . , c 1 N and M3 as required for the performance of non-continuous functions.
The secondary system consists of M2, P2, 1/02, C21, . . . , c2M. The primary sys-
tem is performing the required mission functions; the secondary system is normally
turned off except for periodic intervals when it is turned on and checked, Generally,
the configuration of the secondary system is based on the anticipation of a failure in
the primary system, and its subsequent role as a checkout device and as a source of
verified modules that will become a par t of the primary- system during reconfiguration.

114

Figure 4-19. General Multiprocessor Configuration

The reconfiguration process starts with a failure notification by the primary
system. As stated in the previous section, failure notification consists of a computer
fail light controlled by BITE circuitry, processor-memory, processor-I/O, condi-
tioner, and input device'fail lamps controlled by discrete outputs from the processor,
and a readout specifying the most likely unit containing the error.

There are two reconfiguration procedures; one i f the e r ro r is in either a
memory, processor, o r 1/0 unit, and the other if the error is in a conditioner o r
input device.

The procedure for memory, processor, or 1/0 unit failures uses the secondary
system as a checkout device to test the primary system and isolate the failure. Where
the primary system has isolated the error the procedure provides corroboration.
More often however, the primary system will be unable to isolate its memory-
processor-I/O unit failures. The procedure is as follows: First, the power to the
primary processor P1 is turned off. The secondary system is turned on and checks
itself with the same tests it has been periodically performing when there was no
e r r o r in the system. (The tests are described in the section on backup assurance.)
Next it starts checking the primary system. During these tests all instructions to be
executed by P2 are read out of M2. M1 is checked by loading it with selected bit pat-
terns and verify the loading. Similarly for M3. In the worst case, all locations of
M1 and M3 are accessed. An M1 o r M3 failure is isolated by these tests and reported
via the control panel readout reserved for P2fs reports. This report would confirm
the primary system's failure report wherein either the computer f a i l light came on o r
the P-M light came on with the readout specifying either M1 o r M3 as the likely e r r o r
source. If both M 1 and M3 are found to be correct, checkout automatically continues

115

with P2-M2 checking I/O1. The nature of the e r r o r which would cause I/O1 to be
suspect probably requires the performance of only a select few input/output operations.
Typically the BITE inputs from the conditioners would be accessed and several outputs
would be tried. This test removes the ambiguity of errors reported by the primary
system processor-1/0 lamp, i. e. , if the test fails, I/O1 is the failure source; if the
test passes, P1 is the failure source.

In the case of failures in either conditioners o r input devices, the primary sys-
tem isolates the failure (by means of the conditioner status words and full cycle fault
isolation routine) and reports the failed unit by means of the conditioner or input
device f a i l lights and the readout, In this case the secondary system is not used for
fault isolation although it will probably be turned on to check the replacement prior to
its insertion in the primary system. As a precautionary measure, the astronaut may
request certain prescribed readouts from the primary system to insure that the con-
ditioner involved in sending the failure readout is correct and has not, through its own
failure, implicated another conditioner.

Having isolated the failure by the above procedures, the next step is to recon-
figure the system around the failed unit. Because of the flexible communications
several possibilities exist for processor-memory-1/0 unit failures. Since the sec-
ondary system is active and functioning in cases of those failures, the present plan
calls for using the P2-M2 combination in the reconfigured primary system. 1/02 is
used only if I/O1 has failed, and then it must be connected to the conditioners asso-
ciated with 1/01. Conditioner o r input device failures also require physical replace-
ment to effect reconfiguration. Thus, for processor or memory failures, reconfigu-
ration is effected without physically replacing the failed module, while for other
failures physical replacement is required. Replacement of processor o r memory
modules is performed off-line, after reconfiguration has been accomplished. This
represents an improvement in system availability over the multiple computer system.
Table 4-3 summarizes the reconfiguration procedure.

Table 4-3. Non- Critical Phase Reconfiguration Summary

Primary System
Prior to Failure

Ml,MS,Pl,I/Ol,
C l l , . . . , clN

Failed
Unit

M1

M3

P1

1/01

C l j

~ .

Failure
Detected

BY

Primary

Primary

Primary

Primary

Primary

Failure
Isolated

BY

""

Secondary

Secondary

Secondary

Secondary

Primary

116

~~" . . . -. . ~- . .

Reconfigured Primary System
~~~ -~ "i -. . .I. - 1 
M2,P2,M3,1/01,Cll,. . . , C I N  

M2,P2,Ml,I/Ol, C l l ,  . . . , C I N  

M2,P2,M3,1/01,Cll, . . . , C I N  

M2,P2,M3,1/02,Cll,. . . , C I N  

M2,P2,M3,1/01,Cll, . . . Czk, . . . clN 
~. 



2. Critical  Phases 

The  reconfiguration process  for the multiprocessor  system is similar in its 
basic concept  to  that  previously  defined for  the  multiple  computer  system. However, 
because of the  flexibility of inter-module  communications and the  ability to isolate 
failures to  the  lower  level with confidence,  the  multi-processor can  withstand certain 
multiple failures during  critical  phases.  This will result in a higher  probability of 
mission  success  for this candidate. 

Referring to Figure 4-19, the  primary  system,  consisting of M1,  M3, P1, 1/01, 
C11,. . . , C ~ N ,  and associated input/output devices is performing  the  mission func- 
tions, both critical and non-critical. The secondary  system,  consisting of  M2, P2, 
I/02, C21,. . . , c2M and associated input/output devices, is in an active standby 
redundant mode. Failures in the  primary  system are detected by the  primary  system, 
and where  the  failure  involves units performing  critical functions,  an  automatic 
switchover to the  secondary  system  for  control of the  vehicle is initiated. This con- 
stitutes reconfiguration and is accomplished  in  much less than the  allowable 5 seconds. 
Noncritical  failures in the  primary  system result in a suspension of associated compu- 
tations,  not in an automatic  switchover to the  secondary  system.  Failures in the 
secondary  system result only in a failure notification. No reconfiguration is necessary 
to  sustain  the critical functions. 

Now then, after the first critical failure  the  operating  system can be informed 
of the  failed  system's  status as reported on the  failed  system's  failure  notification 
lights.  The  operating  system can then  perform  isolation  checks  on  the  failed  system; 
if required, as part of its background calculations and report  the  total  system status. 
(The  memory  storage  requirements  for  the  isolation  programs  should  be  readily 
available  considering  the  ttrelatively low" storage  requirements  for  the  critical navi- 
gation and guidance  function.) If the  failed unit were a processor, the operating  system 
can  bypass  subsequent  failures in I/O units,  conditioners, and  input devices by re- 
assigning tasks. If the  failure was  in a memory it is conceivable  that  the  primary and 
active  redundant  configuration  can  be  reinstituted  in  anticipation of the  next  failure. 
For an I/O unit failure, subsequent failures  in a memory or  processor may  be 
tolerable. Similar possibilities exist for a critical  conditioner  failure. 

One additional  consideration is worthy of mention  in the critical phase configura- 
tion of the  multiprocessor;  that is the  possibility of a single failure  bringing down the 
entire  system. The possibility of such an effect is considered  negligible  because of 
the  memoly lockout feature incorporated in the  design.  Basically,  prior to the 
inception of the critical phase, P1 is locked  out of M2, and P2 is locked out of M1 and 
M3. The  lockout feature is described in more  detail in Paragraph 4.2. 3.1. 

As has  been  stated,  reconfiguration  during  this  phase is automatic,  being 
accomplished  well  within the allowable 5 seconds;  Failed units are repaired by 
replacement  during  non-critical  phases  in  the  manner  previously  described. 

3. Mars  Orbital  Phase 

During the  Mars  orbital phase the  entire  multiprocessor  system is on; taking 
fullest advantage of the  configuration  in  the  performance of the  required computational 
tasks. 

117 



During this  phase  there are no critical computations. However, to shorten 
reconfiguration  time in the  event of a 10.6s  of the navigation and guidance  function, a 
minimum  navigation  function is performed in a standby  redundant mode. 

A basic  conflict exists in the  design of the  reconfiguration  system  for  this 
phase. On the  one hand it is undesirable to restrict the  inherent  flexibility of the 
communications between processor and memory  modules, while on  the  other hand if 
such  restrictions do not exist there is the  possibility  that failures in  these  units will 
result in simultaneous  processpr  failure  notifications,  implying  that a known starting 
point for subsequent failure isolation  does not exist. Several  examples of this  effect 
will now be  presented. 

First, suppose a memory fails, say M1. If at the  time of the failure M1 is 
acting as a source of instructions  for one processor,  say P1, then P1 is likely to 
fail  its program control test. While Pl's BITE timer is marking  time  to  recognize 
the  error, P1 could  conceivably write into a good memory,  either M3 o r  M2, and 
contaminate it. Or, P1 could  lock P2 out of M3 o r  M2. Then P2 may subsequently 
indicate a failure while attempting  to  operate with M3 o r  M2. In the  computer's  time 
frame these two failures might  be f a r  apart, i. e. , many computations may occur 
between the  first and second  failure  indication. However, in  the  time frame of the 
astronaut,  the  failures may appear  to  occur  simultaneously. The result is that  the 
reconfiguration  procedure  does not have a known good starting point and requires a 
certain amount of trial and error. 

As another  example, if at the  time of Ml's failure it is acting as an instruction 
source,  not only for P l y  but  also  for P2, both processors will fa i l  their  program 
control tests and simultaneous  failure  notifications will result. 

Similar to  these  previous  examples, if P1 were to fail  with a control  type e r r o r  
it would be  detected by its program  control test. While the  program  control  timer is 
marking time prior  to  signalling  the error, it is difficult  to  predict P l ' s  actions. It 
is possible  that it can contaminate the  system. 

Thus, as opposed to the  non-critical and critical phases,  the  reconfiguration 
procedure  for  the Mars orbital  phase  can  involve trial and error,  since a known good 
starting point for  reconfiguration may not exist. 

Next, what reconfiguration  may  entail will be examined if the known good 
starting point is not  available.  Remember, this situation arises only for  certain 
cases of memory or  processor  failure. 

First, the  entire system is shut down; all computations are suspended. Next, 
using  one  processor-memory pair ,  say P1-M1, a checkout program is loaded  into M1 
from bulk storage.  This  program would be similar to that  used  for checkout  in non- 
critical phases. Then, P1-M1 proceeds to check  itself. If P1 o r  M1 contains a 
failure,  the  cdmputer f a i l  lamp  will  be lit. In this case,  the error is in P1 o r  M1 and 
the  procedure is restarted, this time however,  loading the checkout program into the 
P2"2 pair. The P2"2 system will pass  its self-check  (assuming single errors).  
If P1 o r  M1 dogs.not contain a failure, it can be used as a checkout  device for M3, 
M2, and P2, similar to operation in non-critical  phases.  That is, the rest of the 
system,  except P2, is turned on, and  checked starting with M3 then M2. If both M3 
and M2 are correct,  the  error is assumed  to be in P2. 

118 



Once the  error  is isolated  to  the  processor o r  memory,  the  operational  program 
is reloaded, and computations resume at a reduced  level, depending on whether the 
failure was in a processor  or  memory. The  navigation  and  guidance  function  must 
start  over,  from an initialization  routine,  since  the  previous  values  have  been  lost. 
It is estimated  that it will  take at most J/2 hour to compute  accurate  data. Concur- 
rently,  the  failed  module is replaced with a spare, if the  spare is available, and the 
full mission  functions are eventually  resumed. If the spare is not available,  the 
mission  functions are reassigned,  some  being  suspended or reduced. 

Reconfiguration time  for this type of failure is mainly a function of the  time  to 
resume  the navigation and guidance  function  and the  time  to  remove and replace  the 
failed unit. These actions are not  sequential, but rather  overlap  one  another. 
Astronaut  participation  does  not appear to  be  excessive. He is required to control 
power to the  units, to call  for  the loading of processor-memory  pairs,  to  interpret 
the  failure  notification lamps, and finally to remove  and  replace  the  failed module. It 
is assumed  that  reconfiguration  time  here is of the  brder of magnitude of 30 minutes. 

Next, the  types of communication restrictions  that might be applied  to reduce 
the  necessity of the above procedure  will be discussed.  Essentially  the  restrictions 
tend to assure having a known good memory-processor pair at the start. Further, 
referring to Figure 4-19, they would be  applied  such  that if P1 reports a failure, M2 
and P2 are known to be good, and if P2 reports  afailure, M1 and P1 are known to be 
good, The good memory-processor pa i r  is then  used to isolate  the  failed module. 

The first feature is intended  to  make it difficult for a processor  to  write into a 
memory,  thereby  tending  to  reduce  the  possibility of system contamination by a failed 
processor  or failed  memory  that  affects a processor.  This is done by requiring  the 
processor to execute a specific  sequence of commands  to  enable its writing into any 
one of the memories.  These special commands, which in  the  simplest ease would 
consist of one  Enable Write command  containing a particular  memory  number, would 
be  msociated with hardware  in  the write control  circuitry of the  processor.  Thus 
when a STORE command  into a memory is executed, a write  control would be issued 
only if writing into that  memory  were enabled. In line with the  basic  approach  to  the 
problem, this feature  does  not  impose  much of a constraint on the Pi-M1 pair   or  on 
the P2-M2 pai r  since  the  enable  write  sequence  need only be  executed  once at the 
start. For Pl-M2, Pl"3 , P2-M1,  P2-M3, each  time  the  writing  was enabled, and 
after writing  occurred, it would be followed by a Disable  Write command, such  that 
future  writing again requires execution of the  write  enable  sequence. Note that this 
technique is extremely  flexible  since it is under stored  program control. 

The  next feature is a programming  constraint, and  involves no additional  hard- 
ware. It requires  that both processors should  not be  simultaneously  executing  instruc- 
tions  from  the  same memory. This feature  guards  against  the  possibility of a failure 
in one  memory  causing  program  control failures in both processors.  From  the pro- 
gramming point of view this can be  accomplished  in  several ways. By one method, 
all instructions  executed by a particular processor would be  relocated  to a particular 
memory  prior  to execution. By a second  method, prior  to using a particular  memory 
as an instruction  source  the  processor would first seek  permission of the  other 
processor.  This can be done by having each  processor  store a particular  pattern  in a 
known memory  location when it is using  the  memory as an instruction  source, and 
erasing  that  pattern when it is finished with the  memory.  Alternately  the  processor 
using  the  memory  can  lock  out  th8,other  processor. A  combination of these  methods 
is the  likely  solution, with emphasis on those  requiring  the least computing  power to 
perform the function. 

119 



A third and final feature represents  another  programming  constraint. Given 
that P1-M1 o r  P2"2 will  be  the  eventual  base upon which reconfiguration and e r ro r  
isolation  procedures are built, one would tend  to restrict the  number of write requests 
from P1 to M 2  and from P2 to M1. Basically  the  reason  for this is that  failures  occur 
randomly and therefore would occur as P1 is writing into M2 o r  88 P2 is writing into 
M1. Further, when a processor  appears to be berserk,  either due to its own error o r  
a memory error, there is less of a chance of accidentally  executing a write enable 
sequence and/or subsequent  instructions  causing  writing. 

The  extent  to which these three features are used  should be determined by 
further study. It appears  that  the first and third  features are most  likely, and the 
second feature less likely o r  toned down. 

Up to here only memory-processor failures have  been considered. Failures in 
the input-output area in the Mars orbital  phase will now be discussed. 

Failures involving  an  ambiguity of either a processor  or 1/0 unit  can be resolved 
by the full cycle  fault  isolation  routine if the  processor is normally  communicating 
with I/O devices  through both 1/0 units. Then, as is the case for  conditioner failures, 
the  group of apparent  failed input and/or output signals, can be  associated with either 
a particular I/O unit, o r ,  if all appear to be  bad,  with the  processor. Actually, 
where both processors have  equal  facility in  communicating  through both 1/0 devices, 
I/O unit failures will result in similar failure reports by both processors and  no 
further  isolation  activity is needed. Similarly a failure  report  from only one  proc- 
essor would implicate  the  processor. 

If each  processor is not normally  communicating  with  one of the 1/0 units,  it 
can  attempt to perform  selected input and output operations  through  that  channel  to 
resolve  the ambiguity. The result  can be  substantiated by requesting  the  other 
processor to perform a similar  operation, although this may  not  be necessary. 

In the event of this type of a failure,  be it the processor  or 1/0 unit, tasks 
would be reassigned. The  navigation  and  guidance  function is preserved,  either at 
full strength o r  in a minimal  manner depending on the  failed unit. The full computa- 
tional  capability is restored only after the failed unit has  been  replaced. 

Finally,  conditioner o r  input device  failures are isolated by the  full  cycle  fault 
isolation  routine.  Communications involving the  failed unit are suspended  until a 
replacement is inserted into the  system. 

4 . 2 . 3 . 2 . 4  Backup Equipment Assurance 

In order to assure the  ability of backup  equipment to take over its role in the 
system as required, it will be  periodically  tested. 

Referring to Figure 4-19,the  backup system  during  non-critical  phases  consists 
of M2, P2, I/02, C21,. . . , C2M Normally its configuration consists of at least that 
equipment to perform  the  navigation and  guidance  function during  critical  phases in 
the event of primary  system  failure, o r  to assume a full computational  load  during 
the Mars orbital phase. 

The tests on the backup  equipment are initially  disjoint  from  the  primary 
equipment. That is, prior  to  the start of testing the  primary  processor P1 locks  the 

120 



backup out of M1, M3, and I/Ol. The  backup tests itself by performing  navigation 
and guidance  computations,  memory  check  sums, and arithmetic  functional  tests: 
These  tests would be similar  to  that  performed by the backup computer  in  the  multiple 
computer  system. At the  conclusion of this self-check,  the backup reports  successful 
completion  via its readout.  The  astronaut  then  tells  the  primary  system  to initiate 
interface  checks. P2 is allowed to test its ability  to  communicate with M1,  M3, and 
I,/Ol, and P1 tests its ability to communicate  with M 2  and 1/02. These  tests are 
expected  to  be short and simple  since only the  interface  circuitry is being  checked. 
Typically, for example,  the  processor to memory test might assure  the ability  to 
transfer  ones and zeros on the  data  lines  for both read and drite requests, and the 
ability to address  several  selected  memory  locations.  The  results of the  interface 
tests are reported  via  the  respective  processor  readouts. If no e r r o r  is dstected, 
the  secondary  system is returned  to  the  idle state. If an e r r o r  is detected it would be 
assumed  that  the backup  unit  involved is incorrect so as not to suspend  primary  sys- 
tem functions. The suspected backup unit is replaced and the test is repeated. If it 
fails again, the  primary  system's unit is replaced. This concludes the  procedure  for 
backup  equipment assurance  during  non-critical  phases. 

During critical  phases,  the backup system is on-line performing at least the 
navigation and guidance  function in  active standby  redundancy.  The  lockout feature 
is used to separate  processor,  memory, and I/O units associated with primary and 
secondary  systems. This serves to  assure  that  single  failures will  not bring  the 
entire  system down (as can  occur  during  the  Mars  orbital  phase).  The backup system 
tests itself while performing its operational function.  Where e r ro r s  are detected, 
the  primary  system can be  used  to  isolate the failed unit on request  from  the  astronaut. 
As in  the  discussion  presented  for  primary  system  reconfiguration, this testing would 
allow  the  ability  to  continue  operation  in the  event of additional failures during  the 
critical phase. 

During  the  Mars  orbital  phase,  the  term backup  equipment  does  not  really apply, 
although there is a minimum  navigation  and  guidance backup function.  Thus  in this 
phase  checks are  done as part of the  operational  program. 

4.2. 3. 3  Software  Considerations 

4.2.3.3.1  General 

The  functional  design of the support  programs  for this configuration is essen- 
tially  the  same as that  for  the  multi-computer  described  in  Paragraph  4.2.2. 3. 
Therefore, this section will not describe  the  full  design but will cover  the  differences 
between the two. 

The primary  factor  that  creates  differences  in  the  software design is the func- 
tional Configuration during  the Mars Orbital  Phase when all modules are intercon- 
nected. This differs  from  the  previous  design  where,  the two computers  were  both 
functioning but were independent from  each  other. 

The costs  for  the  support  programs  (detailed in Paragraph  4.2.3.3.8) are less 
than: 3000 words and 10000 cps/sec.  Overhead in the  computational  programs will 
be between 2 - 6% in time and storage. 

Section VI contains a detailed  design of the  overall  executive and reference 
should  be  made there  for  further  information  on  the  concepts  introduced  in this 
chapter. 

121 



4.2.3.3.2 Concepts of Program Design 

The same conventions apply for this design, and scientific  experiments are 
executed as before (see 4.2.2.  3.2). 

4.2.3.3.3 Program Sequencer 

The same scheme of processing  periodic  programs on a time-interval  interrupt 
schedule and filling  in with priority-ordered  request and  background  computations is 
used (see Section 4.2.2.3.3). However, during  the Mars Orbital  Phase a few modifi- 
cations are necessary: 

1. The periodic  programs are grouped into two packages, p1 and P 
separate  schedules. Two processor-module  groups P1 - M 1  an 3’ P2 with - M2, 
are assigned to process  these packages. When PI is operating on PI in MI, 
a logic  block is set to prevent P2 from executing  in M1 in order to insure 
proper  timing  through PI: the  same is true  for P2 - b52. 

2. The request queue is in M 3  and is accessed by both processors when they 
are free to do so. Therefore,  some additional  logic is required to avoid 
interference. 

When a processor begins  scanning  the  request queue, it sets  a bypass to 
prevent  the  other  from  scanning at the  same time. This should  involve a 
delay of only a few  machine  instructions and is reset when it is safe to do so. 

A flag is set in the  request queue entry  for  the NOW request  program when 
a processor begins executing it. Thus, when the  other  processor  examines 
this entry it wi l l  know not to duplicate and will pick up the  next  entry for 
execution. 

3. The background programs are also divided into two groups,  one  for  each 
processor-module group, so that when no requests are being  filled dual non- 
interferring  processing can  be done. 

4.2.3.3.4 Reconfiguration Program 

During the critical and non-critical  phases,  reconfiguration to handle  mission 
phasing failure  recovery and unanticipated requests is accomplished  the same as 
before with  one  additional task involved. The  backup  computations are loaded for 
P2 - M2, and PI- M I -  M3 - I/O1 is mutually  blocked off from P2 - M2 - 1/02: 
this involves the  setting of logic flags. 

In phasing to Mars Orbital from phase ll, the P2 - M 2  - I/02 logic  blocking 
must  be  removed while the  periodic  computations are picked up. The means for doing 
this is presented in the  executive flow diagram in section 6.3. 

A special backup  load profile is available for the Mars Orbital  Phase which has 
only one periodic  package and fewer computational programs  (reduced  scientific 
experiments and communications).  This is used  if one processor and/or two 
memories fai l ,  since in these cases only one  processor-module group can be 
utilized. 

122 



If'M3 during  this  phase  contains only request  programs,  the  failure of one 
memory  module  will  allow  reconfiguration  to  the  original  load  profile.  The only loss 
will be in the  additional  time involved in handling  the former M3 programs as unantici- 
pated  programs. 

4 . 2 , 3 . 3 . 5  Request  Processor 

(See 4 . 2 . 2 . 3 . 5 )  

4 . 2 . 3 . 3 . 6  1/0 Supervisor 

(See 4 . 2 . 2 . 3 . 6 )  

4 . 2 . 3 . 3 . 7  Self-Test  Program 

Although there is a considerable  increase in this  area,  primarily in fault  isola- 
tion,  the  impact is on the  makeup of the  backup configurations  and  not  the  primary 
system. 

A new area is the  failure  notification  process.  The  tests  performed a re  the 
same as before (see 4 . 2 . 2 . 3 . 7 ) .  

4 . 2 . 3 . 3 . 8  Cost of Support  Software 

There is some  increase  in  cost  over  the  multi-computer  configuration's  design 
(see 4 . 2 . 2 . 3 . 8 ) .  The primary one  being  the  overhead  caused  in  the  computational 
programs  due to using an  ENABLE/DISABLE accessing  scheme, 

The support  costs  that  increase are: 

1. Request  scheduling 20 words 170 ops/sec. 

2. Linkage  support 6 words 40 ops/sec. 

3. Reconfiguration 120 words * 
These  additions (146 words  and 210 ops/sec. ) make a grand  total of 2981 words and 
9150 ops/sec. 

It should be mentioned here that,  since  the  multiprocessor  candidate  was 
selected  for  further  investigation, a detailed  design of the  overall  executive  may  be 
found in Section VI. 
4.3 DISTRIBUTED  PROCESSOR 

This section  covers  the  preliminary  design of the  distributed  processor candi- 
date. A description of an  analysis of parallelism  within  computations  shall  be  given 
prior to the organizational  description,  fault  detection,  and  software  considerations. 

4 . 3 . 1  Parallelism 

Two types of parallelism  were  considered:  Natural  Parallelism  and Applied 
Parallelism.  These two types  were  defined a s  follows. 

123 



1. Natural Parallelism - The  property of having  the  capability  for  carrying 
out a number of groups of operations on distinct  data  bases or on  the same 
data base  simultaneously  and independently. 

2. Applied Parallelism - A number of groups of exactly  the  same  operations 
on distinct data bases or on the same data base simultaneously. 

Basically  the  nature of most of the  distributed  logic  organization  machines 
conceived of to date  may  be  broken down to one of these two classes or a combina- 
tion of the two. The Solomon type of distributed  processor  is  primarily an "Applied 
Parallel"  machine while  the  Holland  type may  be  considered a "Natural Parallel" 
machine.  References 20-25 cover a fairly  broad  spectrum in the  type of distributed 
machines  designed  this far. The -Holland  type distributed  processors  (local  control) 
can  handle  natural  parallelism  very  easily;  however, although  applied parallelism is 
also handled  just  like natural parallelism,  the  price of local  control  seems high when 
applied  to a large  number of "Applied Parallel"  problems.  The Solomon  type distri- 
buted processor (global  control) is designed to easily  handle "Applied Parallel" 
problems, but it  is not well suited to the  handling of "Natural Parallel' problems. 
In fact,  to  enable Solomon type  computers to handle  even two "Natural  Parallel" 
computations,  the  ability  to  interleave  control  signals would need  to  be  instituted. 

This  distinction  in  parallelism  led to investigating  the  computations to deter- 
mine  the  effectiveness of the two types of parallelism in a distributed  machine with 
application to the  manned Mars mission.  The  computation task for the  manned 
Mars mission  as defined by the  requirements in paragraph 2,8  was  investigated 
and  the two types of parallelism  were  considered for the  indiviudal tasks. A 
description of  how this  was  accomplished is given below. This  section  is  concerned 
with determining  the  effectiveness of parallelism. How it is actually  implemented 
will be  presented in paragraph 4.3.2.  

The  simple  example  given  in  Figures 4-20 to 4-22 is the  computation of 
a/x + b/x + cy = z. Figure 4-20 illustrates'the  sequential  steps of computation 
on a single  computer (S), while the  numbers  above  each  circle  indicate  the  time 
required to compute  the term in the  circle.  It  may  be  noticed  that  the  a/x  and  b/x 
term fit  the  definition of applied  parallelism,  therefore, they are computed a s  in  
Figure 4-21 using  applied parallelism,  The  term A/S in the  drawing is the  ratio 
of time  required on the Applied machine  to  that  required on the  Single machine  for 
the  total computation. As  shown  in this  example, it takes 2/3 as 10hg on the  applied 
machine for the  computation  to  be  performed,  also  the  degree of applied  parallelism 
required in this  computation is defined as 2 and  occurs only during  the  portion of 
the  computation  where  a/x  and  b/x are computed. 

It may also be  seen  that  the  term c/y need not necessarily  be  computed  after 
a/x  and b/x  in Figure 4-21, that is the  capability for  computing cy in parallel with 
a/x  and  b/x would lead  one to the  computation flow of Figure 4-22. This  capability 
exists if natural parallelism @ available.  However, to say  that  thisisnow a 
combination of applied  and natural parallelism Is rather  meaningless  according to 
the  definitions,  since  Figure 4-22 could be  implemented by natural parallelism  alone. 
That is, three  groups of operations could exist simultaneously, two of which a re  the 
same  mathematically. However, this type of an  approach  can  lead to serious 
inefficiencies when one considers  the  mechanization of such  natural  parallelism on a 

124 



0.333 0.167 

Figure4-20 . Sequential  Steps in  Computation 

_ .  - A 2  
s ’ 3  

Figure  4-21.  Applied  Parallelism in the Computation 

Flgure 4-22. Applied and Natural  Parallelism in the Computation 

125 



distributed  machine  since a global or  central  control function  may be  utilized  to con- 
trol  processors  performing the same  operation  simultaneously while  the natural 
parallelism  characterized by distinct  operations  simultaneously  requires  local con- 
trol to  be  given  to  distributed  processors.  (Further  discussion  on  this  implementation 
will be given in  section 4.3.2. ) 

It is for  these  reasons  that  the  term  "Total  Parallelism" is introduced.  This 
term  indicates  the combination of applied parallelism with natural  parallelism as 
previously  described in arriving  at  Figure 4-22. Basically,  this  term  simply  implies 
using  applied  parallelism  where  possible in the  computation task and then natural 
parallelism  where  possible  after  that,  The  total  parallelism then results in  the ratio 
T/S = 1/2 for  Figure 4-22 and in addition  to  the  applied parallelism used here the 
degree of natural  parallelism  used is 2. 

The  computational tasks  for phase 12, Mars Orbital,  were  analyzed  to  determine 
the ratios A/S and T/S; Table 4-4 lists the results  from the analysis.  It  should be 
noted that  the  functions listed in Table 4-4 correspond  exactly  to  those  identified in 
paragraph 2.8, e. g. the scientific  experiment  functions  correspond  directly  to  those 
listed in Table 2-3. The  quantity %s indicates  the  time  required on the  single  com- 
puter, A/S is the reduction  due to Applied Parallelism and  the % /s, which is the 
time  required  on  an Applied parallel  computer, is given for all tte sub functions  such 
as "Orbit  Determination. Also, the  overall A/S for  each  sub function is given 
besides  each  "Totaltt.  Likewise  the  results with Total  parallelism  are given in the 
last two columns.  The  totals  for all the  functions are given at the  end of the  table and 
are repeated  here: 

-= 0.135 

" 

S - 0.025 

This shows  that Applied parallelism  gives  approximately a 7 to 1 reduction in  
computation time and also providing  natural  parallelism in addition results in a 40 
to 1 reduction  in  computation  time. 

It is interesting to note here  the  differences in the ratios between the  functions. 
For example, 1.1.3 gives  an A/S  of 0.001 and 1.3.4 of 0.00134 both these  functions 
involve the  manipulation of large matrices,  thereby making use of applied parallelism; 
many other  functions  have  numbers much higher  such as 0.5 since they do not lend 
themselves to parallelism. 

Therefore,  considering  these  different  ratios  along with their  relative  require- 
ment  (percent of time) as was done in Table 4-4 gives a good indication of the  effective- 
ness of parallelism when considering  an  overall  problem  for  this  space  mission. 

It should also be  pointed  out here  that  this  subject of parallelism within compu- 
tations  has  been  studied  to  some  extent in Reference 23. The  investigations  listed 
in  that report  were of parallelism within individual type8 of functions  such as an NXN 
Matrix  Inversion,  etc. 

126 



Table 4-4. Reductions  in Computation Time Due to Parallelism 

Function 

1. Nav. & Guid. 
1.1 Att.  Ref. 
1.1.1 
1.1.2 
1.1.3 
1.1.4 
1.1.5 
1.1.6 
1.1.7 

Total 

1.2 Ldmk. Tkr. 
1.2.1 
1.2.2 
1.2.3 
1.  2.4 
1.2.5 
1. 2. 6 
1.2.7 
1.2.8 

Total 

1.3 Orbit  Determ. 
1.3.1 
1.3.2 
1.3.3 
1.3.4 
1.3.5 

Total 

1.4 Orbit  Integration 
1.4.1 
1.4.2 
1.4.3 
1.4.4 
1.4.5 
1.4.6 
1.4.7 

Total 

1.0 Nav. & Guid. Total 

% S  %A/S %T/S 

1.31 
1.56 
0.28 
1.48 
1.51 
2.8 
2.6 
11.54 

2.9 

0.003 
1.1 
0,03 
0.003 
0.005 
6.1 
10.141 

"_ 

0.016 
0,024 
0.0067 
4.65 
0.016 
4.713 

0.002 
0.05 
0.028 
0.002 
0.009 
0.002 
0.26 
0.353 

0.531 
0.5 
0.001 
0.323 
0.046 
0.31 
0.384 

0.336 

0.325 

0.5 
0.04 
0.25 
0.5 
0.5 
0.41 

0.345 

"_ 

0.3 
0.3 
0.45 
0.00134 
0.5 

0.0063 

0.66 
0.80 
0.41 
0.056 
0.585 
0.35 
0.5 

0.535 

3.895 

3.497 

0.0298 

- 
0.189 

0.531 
0.5 
0.001 
0.156 
0.046 
0.31 4 
0.384 4 

0.167 
1.937 

0.216 

0.5 
0.035 
0. 2 
0.5 
0.5 
0.41 - 
0. 246 

"_ 

2.500 

0. 25 
0. 25 - 
0.42 
0.00134- 
0.5 - 
0.0044 

0.0208 

0.630 
0.690 
0.  223 
0.056 
0.284 
0.350 
0.400 

0.119 
0.338 

26.75  0.285  7.61  0.093  2.500 

-(indicates functione  combined to give total  parallelism) 

127 



Table 4-4. Reductions  in  Computation Time Due to Parallelism (Cont) 

Function 

2.0 Tele-Comm.  Total 

3.0  Sci. Exp. 

3 .1  Data Comp. 
3 .1 .1  
3.1.2 
3.1.3 
3.1.4 
3.1.5 
3.1.6 
3.1.7 
3.1.8 
3.1.9 
3.1.10 

Total 

3 .2  Sequencing & Total 

3.3 Pointing & Total 

3.0 Sci. Exp. Total 

4,O Sys. Check- Total 

Scheduling 

Control 

out 

GRAND TOTAL 

56s A/S %A/S T/S %T/S 

4.1  0.25  1.02  0.15  0.617 

0.0235 
0.329 
0.395 
0.855 
1 .0  
2.4 

51.5 
2.4 
1. 88 
0.27 

61.06 

0.141 

6.0 

67.201 

0.167 
0.017 
0.0106 
0.0175 
0.0175 
0.0175 
0.05 
0.003 23 
0.01 
0.06 

0.0437 

0.50 

0.30 

0.067 

0.167 
0.017 
0.0106 
0.0175 
0.0175 
0.0175 
0,033 
0.00323 
0.0094 
0.03 

2.668  1.695 
0.0275 

0.0705 0. 25 0.0353 

1. 8 0. 25 1.5 

4.538  0.0252  1.695 

2.3  0.15  0.345  0.12  0.275 

100 0.135  13.513  0.025  2.500 

__t (indicates  functions combined  to  give total  parallelism) 

Thus far nothing has been  mentioned with regards to the degree of each kind 
of parallelism  required  to  achieve  these  reductions,  In  fact,  these  reduction  ratios 
assumed  all the parallelism  that could be  made  use of in the  problem  was available. 
The computations were gone over to assess the  problem of a finite  dzgree of 
parallelism and  the results are shown in Figures 4-23 and 4-24. It is seen  that  the 
maximum  gain  due to applied parallelism ( l / O *  135) is approached  rather quickly  and 
in fact,  for  this  particular  set of computational tasks no further gain  was  possible 
after a degree of 1331. This  curve  shows  that a reasonable  degree of applied  paral- 
lelism that  may be  utilized is somewhere between 12 and 25.  Beyond 25, the gains 
do not increase  very  much.  It  should  be noted that  this  curve is a succession of 
steps  since  there is a certain gain for a degree of 1 and no more  gain  until a degree 
of 2 is utilized, etc. Another note is that  this  curve  assumes no natural  parallelism 
is available, all gains are simply  applied, 

128 



Figure 4-23. Applied Parallelism - Degree of Complexity Vs Gain 

129 



0 10 20 30 40 SO 

COMPUTATION REDUCTION RATIO 

Figure 4-24. Natural  Parallelism Curve 

130 



The  natural  parallelism  curve is shown in  Figure 4-24. This  curve was derived 
assuming all the  applied pamllelism  that could be  utilized  was  available.  This  was 
done to single  out  the  effects of adding  natural  parallelism on  top of applied  parallel- 
ism.  "he natural parallelism  problem  resembles  that of a PERT routine, A maxi- 
mum of 45 naturally  parallel  groups were conceived of in analyzing  the  computational 
tasks. However, all of these could  not be effectively  utilized. A s  examples, con- 
sider  task 1.3 Orbit  determination;  this  has a degree of 3 in terms of natural 
parallelism: 1.3.1,  1.3.3, and a group  consisting of 1.3.2,  1.3.4, and 1.3.5 may 
be  computed in parallel due to natural  parallelism giving a degree of parallelism of 
3. The  worst  case  group is task 1.2.8, the  time  required  for  the  three  prior  groups 
forming task 1.3 "Orbit  Determination" is less than  the  computation  time  required 
for the group  consisting of 1.2.8. Therefore,  there  is no gain  in  splitting  the  com- 
putations in 1.3 into a degree of 3. Another  example  may be given  within a small 
function,  consider 1.3.1. There  is  also a gain  within this  function due to natural 
parallelism and  once  again  the  gain is  not sufficient to be  used when considering  the 
group 1.2.8. 

Following a procedure  such as this,  one  may  arrive  at the  maximum  degree of 
natural parallelism  that may be  utilized, of course,  more  may  be  used as described 
above, however, no gain  results,  this  maximum  degree was 6 for the total  computa- 
tional  task. The points  between 1 and 6 a r e  difficult to determine  since  there  are 
many possibilities of combining  the  given  computations  within a natural  group to 
achieve  the  maximum  reduction  ratio with that  number of groups.  This  curve 
approaches a straight  line as the  assignment of tasks is  optimized. 

From the results of this  analysis, a natural  degree of parallelism of 6 results 
as the  optimum case. However, there are many  problems which it appears  will  exist 
when combining tasks as described  above into natural groups.  Indeed,  the  communi- 
cations  between  natural  groups  may  reach  very high rates due to chopping a given 
small function  such as   for  example 1.1.1 in  half  and splitting  it  between hvo natural 
groups.  Therefore,  the'optimum  value of 6 may not be  practically  achievable. To 
determine what  may be  achieved would take  an  extensive  additional  effort  and is not 
warranted  at  this  time. It is  estimated  that a feasible  number  for  the  degree of 
natural  parallelism  for the total  computational  task  may  be on the order of 12 to 20; 
this  does not include  overhead  functions  such as  executive  program,  self test, etc. 

4.3.2 Distributed  Processor  Organization 

4.3.2.1 General  Considerations 

This  section  describes a new distributed  logic  structure  that is capable of 
carrying out  computations while  taking  advantage of both natural  and  applied  paral-- 
lelism. In other  words,  the  machine  is  capable of operating  under  local o r  global 
control.  This  should  enable  the  structure to obtain  high  hardware  utilizations  while 
reducing  instruction  and data storage. The  interesting  property of this  structure is 
that  it  was not deslgned  to  solve a particular type of computational  problem as 
distrlbuted  logic  structures  have  been  in the past; but instead, it was designed a s  a 
general  purpose  computer to take  advantage of the new MOS o r  MOS/SOS technologies 
and to provide  very high rellabillty  due to the  use of many levels of graceful 
degradatlon. 

131 



The  mission  requirements  given earlier in  the report  generally apply  to this 
structure. In particular the same  computational  speeds  must be met  and  the  exist- 
ence of critical  computations  means  that  there  must be an on-line  backup. Equipment 
should also  still  be  kept off-line as much a s  possible to increase  reliability. How- 
ever, the  amount of separate  main  memory  required and  the  downtime  due to repairs 
have no real  applicability  here.  The latter point is not applicable  since  spares will 
be  kept as fixed modules  within a single  computation  structure.  The  different  interpre- 
tations of the  requirements will become clearer as the structure is  explained. 

The following description of the  distributed  processor  gives a fairly  complete 
conceptual  description of the  machine.  Further  developments of the  explicit  features 
of the machine  will  depend on a good amount of programming  effort  and  software 
development.  This will certainly  result in new hardware  trade-offs. A s  a result of 
the  uniqueness of this  design  and of the lack of programming  experience with distri- 
buted  logic structures in general, a number of features  such  as  the  length of the 
instruction  word o r  the  number of operations will not be given a s  they were  for the 
multiple  computer  and  multiprocessor. However,  the description is conceptually 
complete including a hardware  and  reliability  estimation so that  it  may  be  compared 
to  the  other two candidate  organizations. 

4.3.2.2 Global and Local  Control  Structures 

Two basic  types of distributed  processing  were  investigated, One type used 
dobal control,  and  was  typified by the Solomon machine.  The  other type used  local 
control as for example,  the Holland machine.  The Solomon machine  uses many cells 
o r  processing  elements  executing  the  same  operation  in  parallel or not executing  the 
operations. A common control  unit  and common addressing of the  cell  memories  is 
used.  This  machine is described  in depth  in the  literature,  This type of a structure 
takes good advantage of applied  parallelism;  however,  it is not able to  take  advantage 
of the natural parallelism in the  computations. In fact  it was designed  explicitly to 
be able to handle  problems with a good amount of applied  parallelism,  such a s  
solutions of partial  differential  equations o r  very  large  matrices, A s  a result, when 
this type of a structure is applied to general  purpose  problems  it  has low hardware 
utilization due to  the  fact  that a good portion of the  time a cell is not executing an 

does not  take  advantage of the  graceful  degradation  ability  inherent in a  distributed 
structure  since  failures within  the  relatively  complex  control  unit  and  memory could 
bring  the whole system down. 

- instruction  that  is sent  on the  communication  lines.  This type of structure  also 

The Holland machine  uses many cells executing  different  operations in parallel, 
Any cell  can  operate as a controller,  an  accumulator or a storage unit.  Paths to 
operands  are then built  from  the  controller  cell to storage  cells and  then back to a 
cell  designated as  an  accumulator in order to carry out  the  operations.  This path 
building  necessity  extremely  complicates  the  programming of the Holland type 
machine  and  also  makes  the  reconflguration  problem after a failure  very difficult. 
There have  been a number of attempts to solve  the path  building problem in order 
to take advantage of the  local  control  features of this type of a machine;  however,  an 
adequate  solution has not  been  found,  This  means  that  this type of a structure  also 
has low hardware  utilization due to problems of paths crossing  and of optimal  pro- 
gramming.  The  structure also has the  additional  programming  problem of a 
relatively  small  instruction  set.  The Holland machine,  and  a  number of varlations 

132 



to try to solve  the  path  building  problem are described  adequately in the literature. 
Another  disadvantage of the Holland type machine  for  general  purpose  computation is 
the  fact  that  even though it is able to execute  either  naturally  parallel or  applied 
parallel computations, it  is obviously  inefficient if a large  number of applied parallel 
computations  must  be  carried  out,  These  computations  must  be  operated upon as if 
they were  naturally  parallel  and as a result  extra  instruction  and constant storage is 
necessary along with more  programming  effort to lay  out  the  solutions. 

4.3.2.3 Autonetics  Distributed  Processor 

4.3.2.3.1 General  Organization 

The  chosen  distributed  logic  structure  uses a number of groups of cells  each 
carrying  out a task in order to  handle  the  computational  requirements. This struc- 
ture is shown  in Figure 4-25. Each  group of cells will actually carry out a complete 
task (such as a navigation  and  guidance  problem), a number of tasks, o r  even a part 
of a  task dpending upon how many  computations are  necessary to do a given  problem. 
The  primary  consideration  used in dividing programs  amongst  the  groups is to limit 
the  inter-communication  amongst groups as much as possible. In this way the  inter- 
group bus can be used  primarily  for  communication  to 1/0 variables  and to one of 
the  groups  operating as the  Executive. Within a group  one of the cells  operates as 
a controller  and  provides  commands  for  the  others.  The  individual  cells.can  either 
accept  these  commands o r  execute  commands  from  their own memory. In this way, 
both local  and  global  control  can  be  carried out simultaneously  within a group. At 
the same  time  all  the  groups  can  be  operating in parallel,  This type of operation 
enables both the  natural  and  applied  parallelism  inherent  in  the  general  purpose 
spaceborne  problem to be  efficiently carried out. It  should  also  be noted that there 
is no main  memory  in  the  system, All  instructions,  contents  and  variables are 
stored within cells.  Since  it 1s also  necessary  for  this  system to reconfigure  within 
five  seconds  during  crltical  phases, a second  inter-group  bus  in included  in  the 
structure.  This 1s not shown  in Figure 4-25. 

Paragraph 4.3.3 discusses  proper use of this  computer  system  during  the 
crltlcal,  non-crltical,  and Mars orbltal  phases.  Very  simply,  during  non-Mars, 
non-critical  phases,  approximately 12 groups with three  more  groups  coming on 
and off perlodlcally will be used to carry out  the  computations. There will also  be 
four  groups handling  executive  functions  along  with a number of spares  connected 
to  the inter-group  bus  but not  Operating. During  crltical  phases,  the  system will be 
dlvided up into two sections.  The first section wlll contain 12 operating and four 
executive  function  groups  and will carry out all the  computatlon of the  system.  The 
second  section will use the  redundant  inter-group  bus  along with two computational 
groups  and  four  executive  functlon  groups. Again, there  will  be a number of spares 
off-line  (but connected to  the  inter-group  busses)  that will be  available to either 
sectlon. A lock-out feature of the same type as  described  for the  Multiprocessor 
will be used In each  group  swltch  connectlng  the  inter-cell  bus to the  inter-group 
bus.  This will enable  the system to operate  in a manner  similar to two separate 
computers  and  a8 a result be able to guarantee  reconfiguration  within  the  five  second 
time  constralnt.  During Mars orbital  operation  the  system wlll use 20 groups doing 
the computatlons, four executive  functlon  groups,  and a number of spares off-line but 
conneoted  to  the  Inter-group bus, From the above, we can  see  that  reconfiguration 
after any  group  failure 1s simply a matter of detecting which has  falled  and  switchlng 

133 

.. . . . " - 



SENSORS 

v 
TO TWO GROUPS 

""""_ 
SERIAL 
COMMUNICATlONi 
'DES TOALL I I 
FOUR NEIGHBORS 
(WRAP AROUND ! I 

I 

BOTTOM SIDE I _-.. a I 
TO SIDE) 

Yl UP SWlTCH 
d 

"" 

' SWlTCH \ "L 

Figure 4-25.  Distributed Processor 



over to a spare group. No replacement  will be necessary  since all spares are on-line, 
This type of sparing philosophy  obviously enhances  the  availability  of  the  system. It 
is possible  here  since  adding  extra  groups only means  an  extra  connection to  the 
inter-group  bus  and as a result will not increase the  connections or   s ize  of the 
distributed  processing  system. On the  other hand, this type of a sparing philosophy 
was not used  in  the  Multiple  Computer o r  Multiprocessor  since a large  increase in 
connections would have  been necessary thus  making  the  approach  impractical. 

In order to  take best  advantage of the MOS technology and  to  get a flexible 
general  purpose  structure, a cell  was  chosen  to  be  one MOS SOS chip. In the 1973- 
1975 time  frame  this  chip  has  been  estimated to contain  about 5,500 FET's on a 
0.15 inch square chip.  This  organization would actually  need a slightly larger chip 
(0.2 inch-square) so that  about 10,000 FET's would be available.  This is certainly 
reasonable if yields  can  be  increased o r  if discretionary  wiring  can  be  used  to con- 
nect  redundant  re-asters. With a  large chip one-half of the  chip  could  contain 32 
18 bit  registers  for  memory  and  control  and  the  other half could  be  used  for  logic. 
This organization is then able to provide a good amount of processing  power  in a 
single  cell.  It also limits the  intercommunications  amongst  cells  since  each  cell 
only communicates to its  four  neighbors  in a serial  manner and in a bite  parallel 
manner to the inter-cell bus. A picture of a cell is shown  in Figure 4-26. This 
figure will be explained  in  depth later in this  section.  The  limited  intercommuni- 
cation  and  the small size of the cells  means  that a complete  distributive  logic  com- 
puter  system of 625 cells  could  be  included on a 8" x 8" two layer board. This 
structure providing  on  the order of 16,000 to 20,000 words of control,  instruction, 
and data storage  should be sufficient  for  the Mars Lander  Mission. 

The  number of cells in  a  group  was  chosen  to  best suit the  applied and natural 
parallelism  inherent  in  the  Mars  Lander  Mission  computations.  The  development of 
the  curves  to  determine  the  number of cells in  a  group is given  in section 4.3.1. An 
analysis of these  results  along  with an estimation of the  executive and I/O functions 
suggested  that  a  structure  containing  approximately 25 groups of 25 cells  per  group 
would be a good solution.  The  function of these  groups a s  executive o r  I/O processors 
is given  in paragraph 4.3.4. The  operation  within a cell will be carried out in both 
byteparallel and serial  manners  at  speeds up to two megacycle  clock  rates.  The 
intercommunications on both the intercell and intergroup  bus  can  be  carried out at  
least  at one megacycle  per  bite  rate.  However,  for  the  Mars  Lander  Mission, it 
appears  that  these  cells could operate  at  a much  slower  rate  than two megacycles  and 
that  the  intercell  and  intergroup  buses could also  operate at less than one megacycle' 
per  bytecommunication  rate.  The  exact  speed  to  be  used  should  be  determined  in 
future  study of this  candidate. As mentioned  earlier,  the  tasks will be  divided up 
among  the  groups so that  intercommunication  from  group  to  group will be  limited a s  
much a s  possible.  This  will  enable  the  intergroup bus to  be  used  for  executive 
monitoring  and 1/0 communication.  This  division of tasks  among  groups will also 
enable  the  power  to  be  turned off to  certain  groups  during a number of phases.  This, 
of course,  increases  reliability and lowers  power  dissipation. It should be noted that 
the  storage  in  this  structure is volatile;  however,  this should  not be much of a disad- 
vantage  since  the  primary  power  supply will be  backed  up and will be of high reliability. 
Even if a  power  failure  should  occur,  bringing  the  system  back up only involves 
reloading  information  from  the bulk storage unit. A volatility  discussion  was 
given for the semiconductor  memory  in  Section VI. This  discussion  also  demonstrated 
that  volatility  did  not  present any severe  problems. 

135 



Macro from inter-group  bu8 

"i" , dontrol cell 

NL 4 
I 
I 
I 
1 

L 

Hicroprogram 
Storage 

t 

Storage 
Registers 

- 7  designat r 

I 
I 

bit 

To Nei hbors 

A NT 'I NL 
I 

9 Neighbor 

+, Logic 

Communication ' > NR 

I 

I 
I 

"- T- " " V  

N (Neighbor bottDm) B 

Figure 4-26. Distributed Processor Cell 

136 



4 .3 .2 .3 .2  Explicit  Features 

Each cell operates as the  controller of the  group,  an  operating  cell, or a stor- 
age  cell.  The  controller cell provides  the  global  control  for a group by placing macro 
instructions on the  inter-cell  bus.  These  macro  instructions  have  yet  to be defined. 
However,  they  will be  instructions  such as matrix  inversion,  sum  check,  sine,  etc. 
The  operation  cells  receive  these  macros  from the controller or from  their own stor- 
age registers, decode  them,  and  then  use  them  to read out a sequence of operations 
from the micro-program  storage  contained in a cell. See Figure 4-26. The  sequence 
of instructions  from  the  micro-program  storage  cause  storage  registers and control 
registers to be added,  exchanged, or transferred to  neighbors., Again referring  to  Figure 
4-26 this  means  that  the  control  registers  allow a macro  from the inter-cell bus to 
load  the  operation register or they allow a macro  from a cell  storage  register to load 
the  operation  register.  This  operation is then carried out  and  the  next operation 
obtained  in  the same  manner.  For  some computations, a cell may need more  storage 
than is available within itself. It  can then use one of its  neighbors as a storage  cell. 
The  neighbor  communication  logic is then  used  to  obtain  information necessary to the 
computation being carried out in a given cell. Al l  the storage within a cell is address- 
able  and can be used in arithmetic or logical  operation. The controller  cell, denoted 
by the designator  bit,  controls  the  use of the inter-cell bus by the operating  cells and 
also  controls the  group  switch shown in Figure 4-25. The  group  switch  contains a 
small amount of decoding  logic  and a flip-flop register. If the  inter-group bus  con- 
tains a command, this  command is let through  onto  the inter-cell bus immediately 
after the present  transmiasion on the  bus. If the command is for  this group,  it will be 
recognized  and  accepted by the controller  cell.  This  group will then remain connected 
to  the  inter-group bus  until  the transmission  is  completed. If the command is not for 
this  group,  the  group  will  be  immediately  disconnected  from  the  bus.  The  command 
from the  executive  group  contains a task  name  that can  be  recognized by the control- 
ling  cell.  Each  group  switch  (there is a switch for  each of the two inter-group  buses 
that connect to an  intercell  bus)  contains a  lock-out register.  This  register can be 
set  by the executive  group and operates in exactly  the same  manner  as the lock-out 
register in the memory and 1/0 units of the multiprocessor. In other  words,  during 
critical  phases the register is set  s o  that any given group will only accept  commands 
and  communicate over one of the two inter-group  buses.  This, of course,  enables 
isolation of fallures so that  reconfiguratlon can be  carried out within the five  second 
tlme  constraint.  The above description  should  demonstrate  that the ability of this 
system, or of a group In particular, to operate with both global  and local  control 
means  that good hardware  utilization  can  be  obtained while using a minimum  amount of 
storage (It  takes  advantage of both applied  and  natural  parallelism). 

The executlve  uses a number of groups to control the two inter-group  buses, to 
handle I/O,  to handle  communication with the bulk storage unit, to hold global data so 
that any group  may use It, to  handle data communication from  group to group, to send 
out macros to load  the  system, and  to allocate 1/0 time on the  inter-group  bus.  The 
operation of the executive is described in more  detall in the following two sections. 
Information over the  Inter-group bus is bite  parallel.  The  number of bits in a byte 
should  be determlned in future  study of this candidate.  However, a rough approxi- 
mation says that 9 bit  bytes a t  one magacycle per blte  rate would certainly  be  adequate. 
However, for any partlcular  system, making  the  bus leas  parallel  means  that less 
drive  must  be provtded by the cell, This, of course,  results in lower  power  and  higher 
reliability  due  to less connectlons  and drivers.  It should also be mentioned that the 
groups  can  use the inter-group  bus only when sampled  and  allocated  time by the  execu- 
tive.  Information  on  this  bus is tagged with control  bits,  names of tasks, data addresses 
and data ltself. An example of possible word formats is given  in Paragraph 4.3.4.  

137 



It should be noted that  the  groups are of fixed size. At first  this  may  seem to 
provide a restriction on  the  ability to allocate  tasks  among the various  groups. 
However, further  inwstigation  shows  that  fixed size groups  actually  alleviate many of 
the programmer's  problems in  optimizing tasks to groups. In particular  after a num- 
b e r  of reconfigurations due to failures,  tasks  that  were  optimized  for one group  size 
might not be able  to  fit into either  smaller or larger groups in an  optimum  manner 
For example, a number of small  tasks  placed in a large group would provide many 
communication problems.  It is also clear that  the  executive would have  many prob- 
lems in trying to shuffle cells  from  group to group  and in matching tasks to  varying 
size  groups  after a number of failures. A s  a result  the need for  reconfiguration  flexi- 
bility and the need to provide  the programmer with reasonably  small  groups of cells 
in which to optimize the program  points  toward a system  structure  as  has been shown. 
These points are discussed to some  extent  again in Paragraph 4,3.4. 

4.3.3 Failure  Considerations and  Reconfiguration 
-. 

The  introductory remarks and basic  guidelines  given in Sections 4.2.2.2 
for the  multiple  computer  candidate  apply  equally  well to this  candidate, so they  need 
not be repeated.  Therefore the discussion will  begin with e r r o r  detection  and  isolation 
tests. 

4.3.3.1 Error  Detection  and  Isolation Tests 

The  tentative  conclusion  for  detecting e r ro r s  in the  distributed  processor  system 
is to use a group  testing  scheme. By this method all cells of a group are checked a t  the 
same  time,  rather than  checking  the  individual cells within a group at  different  times. 
Further,  at checkout time,  the  entire  group  is devoted to the  checkout  and does not 
participate in  the operational  problem.  Because  the  distributed  processor is a rela- 
tively new computer  approach, a brief  discussion of some  other checkout approaches 
which were considered will be presented, followed by a description of group  testing. 

One set  of testing  schemes  empuasized the use of tests that  did not depend on the 
existence of self-test  programs.  Instead  testing would be carried out using  operational 
data. 

By the first  of these  methods, e r r o r  detection  hardware would be  built into each 
cell. No special  testing mode would be  required.  Checks would be  performed con- 
tinually  along with the  operational  problem.  Parity  bits would be generated  and  checked 
as the primary  means of detecting  data  transfer e r ro r s  within  the cell  and between 
cells. Outputs would  be fed  back  and  checked.  Inputs would involve  redundant  receiv- 
ers. Control circuitry would probably be redundant  and  checked for  disagreement. 
Arithmetic  logic could either be  redundant o r  use check  bits.  The  immediate  disad- 
vantage of this  scheme lies in the large amount of redundant  hardware  required 
(probably more than  double). 

A second  approach uses  active  redundant  cells in a multiplexed  manner.  Refer- 
ring to Figure 4-27, a cell  group  containing 20 operational cells and  5 teat  cells  is 
depicted.  The  operational  data flow paths  between cells are not shown, only those 
for  testing a re  shown. Cell T1  is  responsible for testing  cells C1, C4. C5, and C17; 
T2  for  testing cells C2,  C6,  C7, and C11; etc. Periodically,  during  normal  operation, 
four test time  slots are reserved so that  each  test cell may  check its  adjacent  cells. 
All test  cells  act in parallel,  testing  one  operational cell at each  test  time  slot.  The 
test action at  any test  time  slot  consists of checking  the results of the  previous  test, 
and if OK, setting up the teat of the  next cell by loading its  contents  into  the  test cell. 

138 



Upon resumption of the  operational  program, the test  cell  performs the same opera- 
tional  calculations as the cell under  test. A s  an  example,  assume  that  T1  is nbw 
checking C5 and is to test C i  next.  Operationally  T1  is  performing the same problem 
as C5. At testing  time  the  results  generated by T1 are compared with those  generated 
by C5. If disagreement  exists  the  error is reported to the  executive processor to 
suspend  group  operation. If no disagreement  occurs,  T1  is  loaded with the contents 
of C 1  and  will  redundantly perform C l ' s  calculations  during the  next operational  cycle. 
Some of the pitfalls of this  approach are  as follows: First,  there  is a loss of flexi- 
bility of operational  communication  paths  between cells since  one of the four  paths is  
used only for  testing. Second, the  ability to provide  the test  cell the same inputs as 
the  cell  under  test  during  the  active  redundant  test  phase may pose a severe  program- 
ming constraint.  Third,  the  three  operational  communication  paths are not checked. 
Fourth, e r ro r s  in circuitry  peculiar to the  execution of a particular  macro  are 
detected only if that  macro  is being  executed while the cell is tested.  Therefore  there 
could be a n  excessive  delay  (greater than 5 seconds) between  the occurrence of an 
e r ro r  and its  detection.  Fifth,  some  redundant  hardware is  probably.required  for 
disagreement  detection.  Finally,  the  symmetry  and  efficiency of test  cell utilization 
is geometry dependent. For example, in Figure 4-27 each  test  cell uses all  four of i ts  
inter-cell  communication  paths and 5 test  cells  test 20 operational  cells. In a 4 x 4 
test  cell  matrix  the  symmetric  approach is to  have 4 test cells checking 12 operational 
cells, with each  test  cell  checking 3 operational  cells. 

A third  approach  reduces  the  redundant  hardware by employing  time-redundancy. 
By this method a sequence of program  steps  is  performed by the  group,  the tasks of 
the cells within the group a r e  interchanged,  the  program  steps are repeated, and  the 
results of the two executions a re  compared.  The obvious  disadvantage of this 
approach  is  the  reduction in operating  speed by a  factor  greater than two. 

A second set  of testing  schemes  differ  from the  above three  approaches in that 
testing is  performed by executing  self-test  programs,  These  approaches are  more 
in-line with the testing philosophy of the  multiple  computer and multiprocessor 
candidates. 

The first  approach  involves a ''floating  test-cell"  concept.  Here,  one  cell in  
each  group  contains a test  program. In operation,  all  other  cells  perform the opera- 
tional  problem  while this  cell  tests  itself.  After a prescribed  number of program 
steps, the testing  task of the successfully  tested  cell  is exchanged with the operating 
task of another  cell within the  group,  that  other  cell then testing  itself  during the next 
program  sequence.  Thus  the  testing is multiplexed, with all cells eventually  executing 
the  self-test,  except  possibly  the  group  controlling  cell.  The  biggest  drawback of 
this method is the storage  limitations of the individual cell.  That  is,  it  is highly 
unlikely  that a comprehensive  self-test  program can be held in the storage  registers 
of an  individual cell. Note that a cell is in fact a processor and requires the same 
attention to its individual controls  and  registers as does  the processors of say the 
multiple  computer or multiprocessor  candidates. Unlike those  candidates,  however, 
the  cell  doesn't have the memory  capacity for test  program  storage. One might con- 
sider adding hardware  to  reduce  the  software  test  storage  requirements, in effect  pro- 
viding a comprornlse between  the e r r o r  detection  hardware  testing  approach  previously 
mentioned  and this  all  software  approach.  Similarly,  additional  cells within  the group 
could be assigned  solely to hold  the  checkout problem  and conduct tests on each of the 
operating  cells in turn.  Each of these  latter  approaches  may  be  possible, but  have 
been dlsregarded in favor of the approach which conceptually appears to be  able  to do 
the job in the simplest  manner  and  at a reasonably low cost in redundant  hardware 
and time.  This  is  the  group  testing  approach which will now be  described. 

139 



r I ,  
- C 15 C14 , ~ T4 

i . . 
c . h 

C18 . T s -  c19 ' 

I 

Y . f 

C8 

c - - T3 

J 

C16 - 

I-] 

Figure 4-27. Active Redundant Test  Cells Within a  Cell Group 

140 



Figure 4-28 depicts the distributed  processor  configuration  for  group  testing. 
There are an estimated 22 groups  required  for  the  maximum  operational  computa- 
tions.  These are G1,  G2, . . . , G20, Exec,  and I/O. In addition there are two 
groups redundantly  added for  testing  purposes; the Test  Store and Temp  Store  groups. 
The Test  Store  holds the self-test  program  that  is  used to check  each of the other 
groups  and  itself.  The  Temp  Store  group  provides a temporary  storage for the  con- 
tents of a group when the group is. being  tested  and  performs the  function of the  group 
under  test. A s  such,  it  is redundantly  connected  to the  inputs  and  outputs of the 
sys tem . 

Groups are  tested  sequentially, not simultaneously,  under  control of the 
Executive  Group. A s  a n  example of the operation,  consider  the  testing of G1. First  
the contents of G1 are transferred to the  Temp  Store  group which is then assigned 
the function of G1. Next, G 1  is  loaded with the test  program  from the Test  Store 
group and G 1  tests  commence. If no e r ro r   i s  detected  the  contents of the Test  Store 
group are restored into G1 and G 1  resumes  its  operational  functions.  Testing then 
proceeds to the  next group in a similar  manner. If a n  e r ror   i s  detected  during G1 
tests, the executive is  notified  and e r r o r  isolation  procedures a re  begun, Note that 
the 1/0 group is tested by the same  procedure without disconnecting system inputs 
and outputs since  the  Temp  Store  group  contains  redundant 1/0 connections, Also 
the  Executive  group is similarly  tested given that it  can  assign  its  executive function 
to the Temp  Store  group  during  its  self-test. 

Conceptually this  form of group  testing  can  be done continually during  opera- 
tion  provided there  is a test  time  slot  available  for  transfer of data  amongst the 
Temp  Store,  Test  Store,  and  tested  group.  During  this  transfer the groups not 
being  tested are idle.  Assuming there are about 800-18 bit words to be transferred 
from a group,  that three  such  transfers are required,  and that  the inter-group bus 
can  accommodate whole word  parallel  data a t  a 1 mc  rate, the 2400 words  can be 
transferred in about 2.40 ms. Extrapolating  linearly, about 5 ms   a re  required  if 
transfers  are by 9 bit bytes,  and 40 ms if transfers  are  serial. The size of the 
available  test  time  slot would be determined  during  a  detailed  design  effort.  It 
would be based on the number of groups  present in the  most  heavily loaded critical 
phase  and  the  need to test  each  group at   least  once  each 5 seconds in order to 
satisfy  the  critical  reconfiguration  time  requirement. 

Next, consider how the  cells within  a  group would be tested. One or several 
cells of the  group would be  assigned the local  executive  function  to  conduct  the test 
and report  test  results to the system executive.  The  remaining cells of the  group 
would execute a test  problem in the following manner.  Each  cell would perform the 
same  macro  at the same  time,  transmit  the  result of the macro to each of its  four 
neighbors,  check  the  data  received  from  each of its  four neighbors  against  its 
own computer  result,  and  report to the  local  executive  over  the  inter-cell bus. 
Assuming  that only one  failure will occur  at any one time, a cell's  failure  will 
generally  result in each of its  four  neighbors  identifying  it as a failed  cell  and 
probably it will  identify all of its  neighbors as having failed.  The  local  executive 
will decode  the failure  reports  and  format a statue  message to the  system  executive 
over the  inter-group  communication  system.  Inherently  this  procedure  provides 
the  ability to isolate the error to the cell level and  subsequently  bypass  the  failed 
cell during  operation.  Then a group  can continue operation  even in the presence of 
one (or  possibly  more than one) bad cells providing  the  remaining  computing  power 

141 



L 
CONDITIONERS 

Figure 4-28. Distributed Processor Cell Group Configuration  During Group Testing 



of the  group is sufficient  for  its  assigned  task. The extent to which this  cell  isolation 
is achievable would be determined  during a design  effort. A more  conservative 
approach would be to  bypass  the  entire  group when any  cell within  the group  failed. 

Getting  back  to  the  actual  test,  all  operational  macros would be  executed and in 
addition  probably several  macros  specifically  designed  to  aid  the  testing function. 
Examples of such  special  macros  may  be CHECK SUM and DISAGREEMENT DETECT, 
to  quickly  sum  the  contents of the  cell's  storage  registers, and  to  test  results  received 
from  a  neighboring  cell-  and  report  to  the  local  executive. 

It is likely  that  the  testing will involve  a  second  phase with a new local  executive 
assignment  in  order  to  perform  a  complete  check of the cell@)  used  for  the  local 
executive in the first  phase. 

In  addition  to  group  testing,  tests would be  performed on input and output signals, 
in a  manner  similar  to  that  described  for  the  multiple  computer and multiprocessor 
candidates, to detect and isolate  errors in conditioners and input devices. 

4.3.3.2 External  Status  Reports 

The  executive  cell  group  controls  the  issuance of external  status  reports. Two 
types of reports  are  issued: one attesting  to  the  ability of the  executive  to issue  a 
report, and the other  to  indicate  failures  elsewhere in the  system.  The  executive 
processor  group is the obvious  choice for  this function since  it  receives  the  results of 
each of the  group's  tests and maintains  a  cell  group  status  board  table  (described  under 
software  considerations in Paragraph 4.3.4). 

The  ability of the  executive  to issue  a  failure  report is handled by a  pulse stream 
detection  method, similar to  that  described  for  the  multiple  computer and multiproces- 
sor  candidates.  The BITE is mechanized in the  1/0  group, with the controlling  com- 
mands  for  pulse  generation  originating  at  the  executive and transmitted  to  the  1/0  group 
periodically. In general,  failures in the  executive processor  or  inter-group communi- 
cation  bus will cause an executive processor  failure  lamp  to  be  lit. 

The  second  status  report type is the  more  normal one wherein  the  executive  group 
reports  the  failure of another  group  or  a  conditioner  or input/output  device by means of 
a  numeric  readout. 

As indicated in the  following section on reconfiguration, two of the  above sets of 
indicators  are  required: one controlled by the  executive  group of the primary  system, 
and the  second  controlled by the  executive  group of the  backup or  secondary  system 
associated with each of the  phases. 

4.3.3.3 Reconfiguration 

This  section  discusses  the  task of reconfiguring  the  distributed  processor  after 
a  failure  has  been  detected and reported  to  the  space  crew.  Inherently  this  system 
affords the highest  potential  probability of mission  success and availability of all  the 
candidates  because an  individual  group  can  continue  to  operate in the  presence of a 
failed  cell(s), and because the system  can  continue  to  operate  optimally in the  presence 
of a failed  group(s), given of course  that  spare  cells  are  available  in  the  group and 
spare  groupe  are  available in the  system.  Further,  a  large  number of group  failures 
can  be  tolerated  prior  to  mission  failure  because  critical  computations  can be sustained 
with relatively few operable  groups. In essence,  there  exists  a  status zone between 

143 



full  available  computing  power and mission  failure  for which  additional failures  may 
result only in the  elimination of lowest priority  computing  tasks and not in mission 
failure.  This zone can  be  termed one of degraded  performance. 

As in  the  case of the  previous  candidates  the  reconfiguration  plan is based on the 
type of phase in which the  failure  occurs:  either  non-critical,  critical,  or  Mars  orbital. 

Figure 4-32 presents the  distributed  processor  configuration.  The  solid  lines 
represent  the  portion of the  system  required  solely to satisfy  computational  require- 
ments.  There  are 22 cell  groups  (Exec, I/O, Gl-G20), the  primary  intergroup  bus, 
and conditioners C11,. . . . , c1N. The  dashed  lines  represent  redundant  hardware 
required  to  enable e r r o r  detection,  and  rapid  reconfiguration  during  critical  phases. 
Included are  the Test  Store  group,  the  Temp  Store  group,  spare  groups S1, . . . SN 
(the  determination of the  number of spare  groups is discussed in Section 5), a  secondary 
intergroup  bus, and a  redundant  set of conditioners C21, . . . , c2M. In  addition 
there  are  redundant connections  from G3 and G4 to  the  conditioners.  The  functions of 
the  redundant  hardware  will  be  described in the  succeeding  paragraphs,  using  the 
nomenclature given in Figure 4-29. 

4 .3 .3 .3 .1  Non-Critical  Phases 

During  non-critical  phases  the  primary  operational  system  consists of the  follow- 
ing  cell  groups:  Exec,  Test  Store,  Temp  Store, I/O, and  that  subset of G5 through G20 
required  to  satisfy  the  computational  requirements of the particular  non-critical  phase. 
In addition,  the  system  includes  the  primary  intergroup  bus,  conditioners C11, . . . , 
ClN, and associated input/output devices.  The  remainder of the  items  depicted in 
Figure 4-29 are  off-line, and selected  elements would be  brought on-line during  the 
phase only in the  event of failure in the primary  system,  or in preparation  for  entry 
into  a  phase with different  computing resources  requirements  (such a s  a  critical  phase 
or  Mars  orbital  phase),  or  for  backup  assurance  testing  (as  described in Paragraph 
4.3.3.4). 

Only failures in the  primary  system  are  considered.  Failure  considerations  for 
the backup (off-line) system will be discussed  in  the  section on backup  equipment 
assurance, 

Failures can be  categorized  as  being  either  "hard  core"  or  not  hard  core, and 
the  techniques  to  isolate  the  failure  source  will  differ. A hard  core  failure is one 
which prevents  proper  operation of the  automatic e r r o r  detection  and  isolation  procedure. 

First, the  hard  core  failure  will be discussed and how it  can be handled.  The 
hard  core  includes  the  Executive  cell  group,  the  Temp  Store  group,  the  primary  inter- 
group  bus, and the  portion of the 1/0 group and a  conditioner essential to the  control 
of the  executive processor  control  lamp on the  control  panel.  These  elements are 
somewhat  similar  to  memory  or  processor  failures of the  other  candidates which 
caused  the  computer  fail  light to come on. In this  candidate  the  1/0 and conditioner 
failures have  been  tentatively added to  the  hard  core  rather  than  giving  the  executive 
group  a  more  direct  line  to  the  control  panel,  The  reason is that  the  system  executive 
may be flexibly  assigned; any cell  group  can be the  executive,  and  all would have  to  be 
provided  the  capability,  thereby  increasing  hardware. 

With the  available  flexibility of communication  paths,  there  are  many  possible 
methods  to  isolate  hard  core  failures. One such method, similar  to  the  multiprocessor 
method, is to bring  a  portion of the  backup  system on-line and have  it  perform  isolation 
tests on the  hard  core. 

144 



1 

b 

c5 G6  G7  G18 G 19 G20 

I I I 
I PRIMARY INTERGROUP BUS I 

I 
I SECONDARY INTERGROUP BUS 

- - - 
-& """"- --&"-&"-A 1 

I 
I 
1 
I 
I 
I 

110 DEVICES 
- 

I/O DEVICES 

Figure 4-29. General Distributed Processor Configuration 



The  portion of the backup system conducting  the test is G1,  G2,  G3, G4 and a 
redundant  conditioner  communicating with the  control  panel,  say C21.  G1 through G4 
perform functions  equivalent  to  the  Exec, Test  Store, Temp  Store, and 1/0 cell  groups 
respectively of the  primary  system.  The functions of G1 and G2 may be  flexibly 
assigned to idle  groups of the backup system.  The  functions of G3 and G4 are assigned 
at the  time they are connected to  the  conditioners and the  assignment is flexible only in 
the  sense  that any two available  cell  groups of the backup system can be  connected  to 
the  conditioners. 

During  testing  the  secondary  intergroup  bus is used. First the  cell  groups of the 
primary  hard  core  are checked by the  group testing method. If necessary,  conditioner 
tests are performed next. If the failure has still not  been  detected  and  reported, it is 
likely  to  be in the  hardware of any of the  primary  system  cell  groups connected to  the 
primary  intergroup bus. To  automatically  isolate  the cell group  causing  the  failure 
would involve  additional tests wherein  the  suspected  groups are turned on one at a time 
and  the  communications  checked. 

Next assume  the  failure is not  in  the hard  core,  Failures in the  cell  groups a re  
detected by group  testing as  described in Paragraph 4.3 .3 .1 .  The  failed  group status 
is entered by the  executive processor  in its cell group status  table and another  avail- 
able  group is assigned  the  task of the  failed group. Note that  the backup system is not 
involved in this  procedure  (as opposed to  primary  system  processor  or  memory  fail- 
ures in  the  multiprocessor  candidate).  Failures in conditioners or  input devices would 
be handled similarly  to  the method described  for  the  multiprocessor  candidate. 

The  reconfigured  system's  structure  depends on the  failed  element.  For hard 
core  failures  the  system  consists of a new hard  core and set of operating  cell  groups 
which can  be  assigned flexibly. For  non-hard core  failures of cell groups,  the  recon- 
figured system is identical  to  the  original one except  for  the  failed  cell  group whose 
function would be  reassigned.  Similarly,  for  failures in conditioners o r  I/O devices. 

The  present concept calls  for  spare  cell  groups  to be  designed  into  the system, 
thereby obviating the  need for  physical  replacement after failure. Any  of the  available 
spare  groups S1, . . . , SN may be  brought on-line to  make up for  the computing  power 
lost by the  failure. 

4.3 .3 .3 .2  Critical  Phases 

The  reconfiguration process  for  the  distributed  processor  during  this  phase is 
similar  to  that  described  for  the  other  candidates.  Inherently,  however,  this  candidate 
has  the  greatest  potential  for  sustaining  multiple  failures  during  this  phase with rela- 
tively  the least redundant  hardware. 

During  this  phase  the  distributed  processor  acts  functionally  like tw independent 
computers  as long as no failures  occur.  Referring  to  Fi re 4-29, the  primary  system 
consists of cell  groups  Exec,  Test  Store,  Temp  Store, I x ,  a subset of G5 - G20 
required  for  the  operational  calculations, and  Conditioners Cll ,  . . . , c 1 N  and asso- 
ciated input/output devices.  The  secondary  system  consits of the  cell  groups G1 - G4 
which provide  the  Exec,  Test  Store,  Temp  Store  and I/O functions for  the  secondary 
system, a subset of G5 - G20 (not used by the  primary  system), and conditioners 
C21, . . . , C ~ M  and associated input/output devices,  The  primary  intergroup  bus is 
reserved  for  the  primary  system and  the  secondary  intergrow  bus is reserved  for 
secondary  system communication. 

146 



First,  consider  reconfiguration  for  the first failure  in  the  system. If it occurs 
in the primary  system, it is detected by the  primary  system in either a passive man- 
ner by the BITE circuitry  associated with hard  core  failure, by the  group testing e r r o r  
detection  technique  in which case  the  executive  can identify the  failed  group, o r  by 
input-output signal  testing as with the  previous  candidates. In any case,  where  the 
failure affects a critical computation, control of the  vehicle is automatically  passed  to 
the  secondary  processor.  This  constitutes  reconfiguration  for  this  case and is accom- 
plished  in  much less than the  allowable  five  seconds. 

Non-critical failures in the  primary  system  result in  a suspension of the  associ- 
ated  computations,  not  in an automatic  switch-over. Failures in the  secondary  system 
result only in failure notification. 

Next, consider  the  actions which might  be  taken after the first critical  failure  to 
restore a  backup  capability for  the  critical  functions and thereby  be in a position  to 
withstand a second critical  failure.  Regardless of whether  the primary  or  secondary 
system contained the first failure, i f  it  was a cell group  not  contained  in  the  hard core, 
the  executive  can isolate  the  failed group, place  it in a failed status, and bring a spare 
cell  group on-line to  assume the  function. The  system  is  restored providing parameter 
values  affected by the  first  failure can be restored.  There  are  several ways this can 
be done: either by using  the last lmown  good set of parameters of the  failed  system 
which have  been  continually stored  during  operation, o r  by obtaining  the  latest  values 
from  the  system which did  not  fail. Thus,  for  a non-hard core  cell group failure, any 
second  failure  during  the  critical  phase can  be tolerated. 

If the first  failure  was  hard  core,  the  remaining good system can be requested 
to  perform  checks on the  hard  core of the  failed system in  a manner  similar  to  that 
described  for  the  non-critical  failures. Where  the failure is identified as  either Exec 
or  Test  Store  (or G1 or G2 for the  secondary  system)  the  full backup system can be 
quickly restored by reassigning  tasks. Any second  failure in  the  phase can then  be 
tolerated. If the  failure is identified a s  Temp  Store o r  1/0 (or G3 o r  G4 for the 
secondary  system)  a  full backup  cannot be quickly restored  because of the  need for 
physically  changing  connections  to  the  conditioners. A compromise is achievable by 
assigning an  unused cell group to  the  Temp  Store function  and  then, for  the  remainder 
of the critical  phase,  checking  all  elements of the  reassigned  system  except  the 1/0 
group.  Alternately, no compromise  need  exist if additional  groups  were  provided 
backup communication  paths  to  conditioners. If neither of these two alternatives  were 
acceptable,  the  full backup is not restorable, but all the  remaining  groups of the  failed 
system would be  available  in a more  restricted  role  for  future  failures in the good 
system.  Finally, if the  hard  core  failure  were  identified as on an intergroup  bus, it 
is questionable i f  the  full backLp could be restored  during  the  phase  because of the 
actions  required  to  identify  the  failed group. Again though, all groups of the  failed 
system  are  available  to the good system, on the  operating  intergroup bus. Similarly, 
where  conditioners or  1/0 devices  fail, a full backup is not restorable, but  the 
remainder of the  system is available  for  use in the  event of subsequent  failures, 

A s  was  the  case  in  the  multiprocessor  candidate,  single point failures  that  bring 
the  entire  system down a re  of concern.  To  guard  against  this an intergroup  bus lockout 
feature,  under  executive  control,  has  been  incorporated.  In  effect tbe primary system 
is locked  out from  the  secondary  intergroup  bus by the  secondary  system  executive, 
and vice  versa.  This  feature  was  described in detail  in  Paragraph 4.3.2. 

147 



4.3 .3 .3 .3  Mars  Orbital  Phase 

Referring  to  Figure 4-29, all  elements depicted  play an active  role  in  the  system 
during this phase with the  exception of the  spare  cell  groups and possibly  the condi- 
tioners C21, . . . , C2M, and the  secondary  intergroup  bus. 

As opposed to the  previous  candidates, a minimal  backup  navigation and guidance 
function is not performed and  hence for  certain  failures  reconfiguration  time would be 
greater than otherwise  attainable. Since critical functions are not  performed in this 
phase,  there is no 5-second reconfiguration  time  constraint and the  probability of 
mission  success is not  affected.  The  potential increase in reconfiguration  time  may 
decrease  system  availability, but this effect is reduced  since only failures in selected 
portions of the system can cause it. The  availability  effect is described  in  Section 5. 

The main  reason  for  not  implementing  the backup  navigation  and  guidance  function 
is the  additional cost in hardware,  over and  above that  depicted in Figure 4-29. About 
six  extra  cell  groups would be required.  The  rationale behind this  will now be 
explained. 

To  implement a backup it is necessary  to  minimize  circuitry whose failure would 
cause both the  primary and backup  functions  to  fail. This  results in  a  configuration 
similar  to  that in critical  phases. Thus a second  Executive, Test  Store,  Temp  Store, 
and 1/0 cell  groups are required. Whereas for critical phases G1 - G4 were  assigned 
to  these  functions,  during the Mars orbital  phase  they are not  available  since  the 
system  has been  sized  to  reduce  hardware by using G1 - G4 for  primary computations. 
Thus  four extra  groups would be required  to  perform  these  functions.  In addition, it 
would be necessary  to  perform  the minimum  navigation and guidance calculations in 
cell  groups not performing  the  primary function,  and to  communicate  results  from  the 
prime  to the backup for updating purposes.  This would probably result in the addition 
of two more  cell groups. 

Failures  during  this  phase can  be categorized as either  hard  core, not hard  core 
but  affecting  the  navigation and guidance  function, o r  not  hard  core and  not affecting 
the navigation and guidance  function. In the  latter two cases, failures  are self- 
isolatable by the  system and where the navigation  and  guidance  function is not  affected, 
reconfiguration is fast, simply  requiring  the  assignment of a spare group  to  the  failed 
group's function.  Where the  navigation and  guidance  function is affected,  the  spare 
group is again  assigned  the  failed  group's function,  but in addition  an  initialization 
routine is required  since  previous  values  have  been  lost. It is estimated  that  it may 
take  approximately 1/2 hour  to  reimplement  the N and G function,  Finally, for  hard 
core  failures a procedure  similar  to  that  described  for  non-critical  phases  can be 
used with one exception,  The  exception is that  the  isolation  tests would probably  be 
conducted by a hard  core  made up by reassigning  elements of the primary  system not 
in  the  original  hard  core. 

148 



4.3.3.4 Backup  Equipment Assurance 

A s  in  the  case of the other  candidates  the backup o r  off-line equipment is 
periodically  tested in order  to  insure  its  ability  to  take  over  an on-line role as 
required. 

Referring  to Figure 4-29, during  non-critical  phases  the off-line equipment 
consists of cell groups G1 through G4, the  subset of  G5 through G20 not  required  for 
the  computational  requirements of the  phase, and spare  cell groups.  In  addition, it 
contains  conditioners C21, . . . , c2M and associated 1/0 devices.  Normally, this 
equipment is required  either  to  furnish  spares  for  the  primary  system,  to be  operably 
configured as an  active  standby  redundant  system  during  critical  phases, or  to provide 
the  additional  computing  power  required  during  the Mars orbital  phase.  Tests on the 
backup would be  performed on a request  basis.  Testing  may  be conducted  and con- 
trolled by the  primary  system,  interleaved  into its computational  cycle  in  available 
dead  time, o r  may  be largely  divorced  from  the  primary  system by assigning  cell 
groups G1 through G4 the  test  controlling  role.  The  latter  case will  be assumed  since 
reconfiguration  for  hard  core  failures in non-critical  phases  involves  the  existence of 
a secondary  executive  system, as does  the  preparation  for  entry  into, and the  action 
within, critical  phases. Once G1 through G4 a re  assigned,  the  test  program is loaded 
from bulk storage. Data is  entered  to denote which cell  groups,  conditioners, and 
input devices are to be tested.  Testing then starts, with all communications  initially 
proceeding  over  the  secondary  intergroup  bus. 

The  bus  lockout feature is used  to  isolate  the  primary  system  from  the backup 
system and  thereby  reduce  the  possibility of e r ro r s  in the backup system  affecting 
primary  system  operation. Group testing, as  described in Paragraph  4.3.3.1, would 
be  used  to  check  all  cell  groups.  Conditioners and input devices can  be  checked with 
operational  type  problems if the input devices a re  available. Where input devices are 
not available a combination of built-in test  stimuli and the  routing of conditioner  outputs 
to  inputs would be used.  Test  results  are  reported by means of the  secondary  control 
panel  readout.  Where failures  exist, the failure  can  be  classified as  hard-core in 
which case  further  isolation  testing  is  required,  or as not  hard  core in which case  the 
failed  group is identified  and  removed  (electrically)  from  the  system. If no failure is 
detected,  the  second  phase of testing  is  entered.  This  involves  interface  tests, i. e. , 
the  ability of the  primary  system  to communicate with elements of the backup system 
and vice  versa.  Test  results are reported by means of the  respective  executive  read- 
outs. If no  failure is detected  the backup system  has been  completely  verified and is 
returned  to  the off-line status. If a failure exists further  testing may  be required  for 
isolation,  possibly with new executive  assignments. 

During critical  phases a portion of the backup system is on-line  in active  standby 
redundancy and is tested  operationally  similarly  to  the  primary  system. No testing.of 
the off-line portion is expected to  be done during  these  relatively  short  periods. 

During  the Mars orbital  phase  the  maximum  computing  power is  on-line. 
The  several  spare  elements  that  comprise  the backup would be checked periodically 
by the  primary  system. 

149 



4.3.4 Software  Considerations 

4. 3.4.1 Reconfiguration  Flexibility 

The basic  difficulty in  programming a distributed-logic  machine  lies in trying 
to  achieve  optimal  code (i. e. , maximum  machine  utilization and no usage  conflicts) 
while retaining  reconfiguration  flexibility. With enough work, a single  program  can 
be  mechanized  in an appropriate  array of processor  cells,  Figure 4-30(a) , so that  in 
all possible parallel execution  sequences no path-building conflicts  arise, and with 
minimal  delays,  unused  cells, and overhead. If one  cell should fail, however,  the 
optimum  solution for  the new array,  Figure 4-30(b),  might be unrelated to the  origi- 
nal  in any direct o r  predictable  manner. At least (k - I).! solutions would  be re- 
quired to anticipate  handling k failures with optimality.  For  the  mission  under  study, 
reconfiguration is also necessary to meet  several  mission phase  requirements.  Each 
phase is sufficiently unique (with the  possible  exception of some  coast  phases)  that a 
separate solution for  each is required. Add to this  the  fact  that  unanticipated compu- 
tations  must be processed and therefore  the need for  reconfiguration  flexibility is 
overwhelming. 

The main  software advantage of the  candidate  distributed-logic  machine, 
Figure 4-31, is the  fact  that it is modularized into  approximately 24 mutually  exclu- 
sive  standardized  groups of processor  cells.  This  approach  permits  programming of 
the  mission function  into  locally  optimum, group-size  task-modules. It must be noted 
that  overall  optimality,  for any one  configuration, is not as good as it could be  for 
a non-modularized machine, but the  optimality  level will be consistent  after  multiple 
reconfigurations due to mission phasing,  unanticipated  requirements, or  failures.  
Better  overall  optimization  might  also be achieved if the  groups  were of various 
sizes and tailored to the  specific  task  needs. Once again, however,  the necessary 
reconfiguration  flexibility would be  missing. 

FAILED  CELL: CANNOT BE USED 
ON PATHS OR TO CONTAIN 
INSTRUCTIONS/ DATA 

Figure 4-30. Logic  Array 

160 



INTER-GROUP BUSS 

Figure 4-31. The  Cell-Group Machine 

This  flexibility of this organization  provides  several  side-effect  benefits inclu- 
ding  the following: 

1. Reduced Executive - The  monitoring  procedure need be concerned only 
with groups' status and assignments;  the  reduction in table  size alone 
is significant. Of course,  the  reconfiguration  process is itself greatly 
simplified. 

2. Graceful  Degradation - So long as spare  groups  are  available, no loss 
in computational  capacity will occur.  Otherwise, low priority  tasks 
can  be deleted o r  backup task modules, which require  fewer  groups, 
can  be  loaded. 

3. Time-sharing - Those  task-modules  performing only non-continuous 
functions  during a phase  can time-share groups. 

4. Easier  Programming - It is much simpler to optimize  programs  for 
a 25 cell  array than a 300 cell  array and modifications to one task- 
module will generally  necessitate  redesign of jus t  one cell-group's 
coding, not the  entire  program. 

5. Standard Load Format - The task-modules can be organized  easier on 
the  mass  storage  since they are standard-sized. This also means  that 
a single  algorithm will handle all task-module  loading into the  groups. 

4. 3.4.2 Support  Software  Design 

The  Executive processors, including the 1/0 Supervisor, will occupy two 
cell-groups. The most  striking  difference  in  the  software  design  for  this  candidate 
and the two previous  ones  (described  in 4.2.2.3 and 4.2.3.3) is that  program, o r  
task, sequenc,ing is not required  whereas a new function, inter-group  communication, 
is necessary. Another  significant change is that  some  executive  functions are 
localized within the task-modules. 

151 



4. 3.4.2.1 Inter-Group  Communication  System (ICs) 

Each  task-module is constructed to be  essentially independent; in  fact,  the 
size of the  cell-groups is partly  determined by the  capacity requirements of the 
various independent mission  functions. However, some  inter-group  data transfers 
will occur on  the  Inter-Group Bus due to  the following: 

1. Global data, i. e., those  parameters of interest  to  more than  one  inde- 
pendent function, must  be  passed  from  the  task-module which computes 
it to those  that use it. This is not done directly, but through  the  Global 
Data Area  described below. 

2. Some mission  functions are too large to be programmed  in only one 
task-module. When multiple  task-modules are used,  the  interface 
data  necessary  to connect the  parts of the function must be passed. 

3. The 1/0 System will use this bus  to pass  some  data  to and from  task- 
modules. 

4. Executive macro  instructions are issued on the  Inter-Group Bus. 

5. Messages to various  Executive  processors  must be passed from the 
task-modules. 

In order to avoid conflicts,  the ICs monitor  controls  the usage of the Inter- 
Group Bus. Each  task-module  in  the  computer is allotted weighted  usage on a 
time-shared  basis. When a task-module is activated,  the  number of accesses 
available per  cycle  required is allocated;  the  total  number of accesses  available 
must  be large enough to handle the  highest  possible  number of cumulative  require- 
ments. At a fixed rate,  the ICs monitor  selects, in turn,  particular  task-modules 
for use on the  line as follows: 

1. Task-module output - A macro is issued to enable  the  task-module to 
write a data  item (a parameter  value o r  a message) on the  line.  The 
data  item, which could be null, is then read by the ICs monitor and 
passed  to  the ICs decoder, which determines its destination. 

2. Task-module input - A data  item or   macro is written with a key identi- 
fying the  destination  task-module. Only the  designated  task-module 
has the  proper  mask to permit  reading of the input. 

3. NO-FAIL indication - The task-module  must write a special  data  item 
which signifies a NO-FAIL condition in  that  cell-group, 

A certain portion of this time-share  cycle is reserved  for  exclusive use by the 
Executive processors; this will vary depending  on how many task-module accesses 
are currently  required. This "executive-time" is used to issue macros intended 
for all o r  some of the  task-modules. 

Each  task-module is continuously attempting to use the ICs Bus. A key mask, 
which is unique for  each task-module and is not hardware  oriented, is used  to  control 
actual  access. 

152 



In order  to  avoid  extensive  bookkeeping  in  trying  to  distrubte  global  data  to  the 
proper  task-modules a Global Data  Area (GDA) is maintained in the ICs. Every 
global parameter  that  will be used  anywhere  in  the  entire  program is allocated  fixed 
location register  storage. When a global data  item  is output from  a  task-module  it 
will  contain a header  identifying  it as  such and its fixed  location in the GDA. This 
header is interpreted by the ICs decoder  and  that  data  value is  stored in  the GDA. 
When a  task-module  requires  global  parameter  a  message  to  the GDA monitor is 
output  giving the  location of the  item  and  the  header  to  be  placed on it before it is 
input  to the  task-module. 

Figures 4-32 and 4-33 contain  examples of possible  word  formats.  These 
formats  are only included to facilitate  understanding of the  software  communication 
routines and will  not be explicitly  specified at  this  time.  Further  study on an orgmi- 
zation  like  this  should  include  investigation of possible  formats.  The  fixed  codes 
used in Figure 4-32(a) are: 

1. c - Control  bit = { I 01 data  item 
00 message 1 

2. KEY - Key specifying  which  task-module or  Executive  processor  the 
data  value or  message is to be transmitted. 

3. ID - The  fixed  location of data  values  in  the  receiver  or  a  message 
number. 

4. TEXT - A data  velue or  a  message. 

C I  KEY 1 ID 1 TEXT I 

Figure 4-32. Output Data  Item/Message  Formats 

Figure 4-32 (b) is an example of a data  item  containing a value for  a global 
parameter X, a key to the Global Data  Area  the  parameter's  location  and  the  value 
of X are  present.  Figure 4-32 (c) represents  a  parameter X that is to be input  to a 
task-module.  Figure 4-32(d) shows  a  message  being  sent  to  an  Executive  processor 
(P); when a  processor  may  receive  multiple  messages a message  number, n(m), must 
be  included. 



The  data  item  format is shown in  Figure  4-33(a), (b), and  the  macro  format in 
4-33 (c), (d) ; field  codes  and an example is given for each.  The  field  codes a re  the 
same  as  for  Figure 4-32 except  as  follows: 

1 

C S KEY I TEXT J 

Figure 4-33. Input Data Item/Macro  Formats 

The  ICs  monitor  does  not  request or schedule  data  transmission  except as 
directed by other  Executive  processors.  However,  since  more than one input  to a 
task-module  may  be  specified,  during a time-share  cycle,  each  task-module will 
have  a  first-in-first-out  data  item  queue  maintained in the  ICs. 

4.3.4.2.2  Reconfiguration Program 

Two main  tables  are  used  to  monitor and control  the  configuration of the 
computer;  these  are  cell-group  Status  Board  and  the  Task  Status  Table.  Formats of 
these  tables are illustrated in Figures 4-34 and 4-35, respectively. 

CG A S 

where: 

CG: Cell-group  internal  name 
S: Status  Failed,  spare,  dormant-task,  active  task 
A: Assignment  (Task Statue Table  entry) 

Figure 4-34. Cell-Group  Status  Board Entry 

154 



TK  ICSA PR Q LP 'CG S 

where : 

TK: 
S: 

CG: 
LP: 

Q: 

. PR: 
ICSA: 

Task  key 
Status  (Active,  dormant,  requested,  delete-flag unloaded) 
Cell-group  assignment 
Mass-storage  location 
(Tasks in cell-groups)  Query  mask  for NO-FAIL indication  verify. 
(Tasks  not  in  cell-groups) Queue pointer  for wait string. 
Priority (non-interruptable,  immediate, ASAP, 0) 
Number of ICs  accesses  required  per  time-share  cycle 

Figure 4-35. Task Status  Table  Entry 

As with other  candidates,  there  are  three  conditions  that  can  necessitate  recon- 
figuration:  failure,  phasing, and unanticipated  requests.  There  are two primary 
means of performing  reconfiguration:  dead restart  and  transition. 

A dead restart  must  be  performed  whenever  a  power  failure  or ICs failure 
occurs  since,  in both cases,  the  computer is down and  the  volatile  registers  are 
wiped  out. When the  failure  has  been  corrected, a special load program  can  be 
keyed in  automatically or  manually  via  the  console.  This  program  performs a 
computer  verification test and loads in the  Executive  task-module which  then controls 
the  loading of the  other  task-modules. A logical  diagram of this load program is 
shown in Figure 4-36. 

Al l  other  conditions  cause  transition mode  reconfiguration,  which is performed 
in  the  Reconfiguration  Program.  Figure 4-37 shows  the  logic of a phasing  reconfigura- 
tion. Figure 4-38 (a) and (b) shows  the  additional  logic for  failure and unanticipated 
request  reconfiguration.  The  basic  process  consists of identifying  task-modules  to  be 
deleted,  scanning  a Load Profile,  making  task-module  assignments, and initiating 
loading. When a task-module  terminates  execution, it must send an  "end-of-task" 
message  to  the  Reconfiguration  Program.  This will enable  processing of the  wait 
queue of request  programs. 

If multiple  failures  reduce  the  number of cell-groups  such  that  %on-interruptable'' 
task-modules  cannot  be  loaded, a backup  load  must  be  initiated. This mould consist of 
critical  task-modules and a priority  ordered list of backup-mode,  non-critical  task- 
modules. 

The Load Profiles mentioned  above are  located on the  mass-storage and consist 
of pointers  to  initial  loads  for  task-modules.  There a re  Load Profiles  for  each  phase 
(primary and backup) and for  each  individual  task  module. 

155 



V?XlFi' THE LOAD THE EXECUTIVE 
OPERATION OF CELL TASK-MODULES SET 
CROUPS AND T H E  WITH AN EMFTY TASK H I GET AND PASS 

PHASE NO.TO 
EXECUTIVE INTER-CRUJP BUSS STATUS TABLE 

I 

SIGNAL EXECUTIVE START 

Figure 4-36. Dead Restart  Program 

4.3.4.2.3 Request  Processor 

A task-module may upon testing a condition or receiving an input from the 
console, or  completing an assignment,  request  that  another  task-module  be  executed. 
This request is issued  in  the  form of a message  to  the  Request  Processor which 
contains  the key of the  requested  task-module. 

When a request is received,  an  entry  for  the  task-module is made in the Task 
Status  Table. If an entry  already  exists, it is checked  to  see if it is already  loaded; 
if so, an initiate  execution  command is issued. In all  other  cases  the  unanticipated 
request  entry of the  Reconfiguration  Program is executed. 

The  request  message  can  also  contain a priority  to  be  assigned  to  the task- 
module. 

The  cell-group which contains  the 1/0 Supervisor is connected  to  the  conditioners. 

When a task-module  wants  to  input  a  parameter,  it  sends  a  message via ICs to 
the 1/0 Supervisor. This message  indicates which mnsor is to be  sampled and a 
header  which is to be added 80 that the value may be sent as a  data item, via ICs 
again, Reasonableness tests are  performed in the task-module, not in the 1/0 
Supervisor, 

156 



I I LOCATE NEW PHASE 
LOAD  PROFILE ON 
MASS STORAGE 

n TAG TASK-MODULES IN 

ARE T Q  BE DELETED 
TASK  STATUS TABLE THAT 

/-\ """"""_ 1.' J r 
REPLACE A TAGGED  TASK 

ONE CONSTRUCTED FROM A 
STATUS TABLE ENTRY  WITH 

THE SAME CELLGROUP 
LOAD  PROFILE ENTRY: KEEP 

8 

CONTINUES FOR 
THIS PROCESS 

ENTRIES 

I 
I STATUS BOARD I ALL TAGGED 

ASSIGNMENT I 
LOAD CELLGROUP 
WITH LOADER 
ROUTINE 

ISSUE START LOAD 
SIGNAL 

0 

I 
I 
I 
I 
I 

J 

UNLOADED  TASK-  MODULES 

CREATE  TASK  STATUS  SET  THEIR  STATUS 
TABLE ENTRIES WITH 
"UNLOADED" STATUS 

T O  "SPARE" IN CELL 
GROUP  STATUS BOARD 

Figure 4-37. Transition Reconfiguration (Phase  Start) 

157 



UNANTICIPATED  REQUEST OR 
UNLOADED  REQUEST START 

% 

CELLCROUP FAILURE 
START 

CC FORMAT 

CHANGE STATUS 
OF ENTRY TO 
"ACTIVE" 

I 

L 

FIND TASK STATUS 
TABLE  ENTRY FOR 
FAILED TASK-MODULE 

ASSIGNMENT 
REMOVE CELLCROUP 

i 

I 
- 

"REQUESTED" 

1ST CHOICE CELLCROUP  STATUS 
FOR USABLE ENTRY 

A - 
TAG TO INTERRUPT 
ASSOCIATED ENTRY 
IN TASK STATUS 
TABLE 

PRIORITY 

WAIT QUEUE 

ASSIGN TO TASK 

Figure 4-38. Transition Reconfiguration  (Unanticipated) 

158 



Outputs are handled  similarly,  except  that two transmissions,  a  select  message 
and then  the  data item, must  be sent by the  task-module on the ICs. Verification of 
output feedbacks is performed in the 1/0 Supervisor. 

4.3.4.2.5 Self-Test  Program 

(See Paragraph 4.3.3.) 

4.3.4.3 Task-Module  Software Design 

Each  task-module is required  to  perform  certain  "local-executive"  functions. 
In  general,  the  actual  construction of these  routines  will  vary within each in order 
to  achieve  local  optimality. 

The  controlling  cell of the  cell-group  will, of course,  contain  all  the  scheduling 
logic  for  the  programs in the  task-module. 

The  logic  to transmit the NO-FAIL indication  and  the end-of-task message  must 
be  contained in each  task module. 

4.3.4.4. Estimate of Software  Overhead 

The  overhead  costs a r e  considerably  higher  for  this  candidate and a re  expected 
to be on the  order of 20 percent.  This is based on the  fact  that two cell-groups a re  
used  for  Executive and 1/0 operation and at  least one cell in  each  cell-group  assigned 
to  task-modules is required  for  local  executive  control. In addition, two cell  groups 
will  be  required  for  the  self  test  operations. 

159 





V. SIMULATION  AND  EVALUATION OF CANDIDATE  ORGANIZATIONS 

5.1 SIMULATION AND RELIABILITY ANALYSIS 

5.1.1 Monte Carlo Method 

5.1.1.1  Introduction 

The  reliability  and  availability of the  various  candidate  configurations  were 
investigated by means of a Monte Carlo  reliability  analysis  program.  This is a  com- 
puter  program which generates  simulated  statistics  for  each  configuration. Some 
consideration  was given to  closed  form  analytical  expressions  for  the  reliability 
analysis. However, the  mission  complexity  proved  this  to  be too difficult  to  derive 
in  the  time  available. 

Monte Carlo  techniques of analysis  refer to  the  simulation of random  variables 
in  a  process by the  generation of random  numbers o r  sequences. For reliability 
analysis,  the random  event which is simulated is  component or  subsystem  failure.  It 
has  been found that  electronic equipment  exhibit  random failure  rates which have  an 
exponential  distribution.  That is,  the  probability of failure  as  a function of time, 
Pf(t), is  exponentially distributed. 

Pf(t) = l-e-At where A is the  expected  failure  rate. 

This equation is  interpreted  as meaning: Given that  the equipment is currently  failure 
free, the  probability  that  a  failure  will have occurred by some  later  time  t is given by 
Pf(t) = 1-e- At . 

It  can  be shown that  the  expected  time  to  failure is X-’. The  probability  density 
function for  Pf(t) is Ae-At. The  expected  value of time,  E(t),  is then found by 

0 
II 

E(t) is then  defined as  the mean time to failure, MTTF. 

5.1.1.2  Operation of Monte Carlo  Program 

The Monte Carlo  program  solves  the  probability of failure equation  in reverse. 
It generates  a  random  number which is evenly distributed between zero and one. It 
sets this equal  to  the  probability of failure and  solves  for  time  to  failure. 

Pf(t) = 1-e - A t  

O r  t = - In  1-Pf(t) MTTF 

161 



This equation is solved  for  each  piece of equipment  in  the  system.  The A o r  MTTF 
which is used  in  solving  for t is a function of whether o r  not the  equipment is turned 
on o r  off. It has been found that  electronic  equipment is susceptable  to  failure even 
while it is sitting  idle.  This  idle  failure rate is  distributed exponentially also and  the 
failure  rate is approximately  proportional  to  the  active  failure  rate. For  this  analysis 
it is assumed  that  the  idle  failure  rate is directly  proportional  to  the  active  failure 
rate; so that Pf for  an  idle  piece of equipment is: 

-At Pf(t) = 1-e - 
CY 

where CY is the  constant of proportionality. 

A block diagram of the Monte Carlo  program  is given  in  Figure 5-1, the Monte 
Carlo  program first generates  the  time  to  failure  for  each  piece of equipment  based 
on its original  status  i.  e.,  active o r  idle.  The program then  checks if  any of the 
times  to  failure of active  equipment are   less  than or  equal  to  the length of the  first 
phase of the  mission. If there is a  failure,  another  random  number  is  generated and 
compared with a  probability of detection of the  failure. If the  random  number i s  lower 
than the  probability of detection  the  failure is recorded  as  a  detected  failure.  That 
equipment is  then replaced (in the  simulation) and  the program continues. If the 
random  number is  higher than the  probability of detection  the  failure is recorded a s  an 
undetected  failure.  Idle equipment failures  are  recorded when the  piece of equipment 
is turned on either when it has replaced  an  active  failed  piece of equipment o r  when it 
is turned on at  the beginning of a new phase. Once the  failure is recorded  the equip- 
ment is treated  the  same  as  active equipment which has  failed, i. e., it is replaced 
and  downtime is accumulated. Downtime i s  accumulated  in two ways: by the  replace- 
ment time  for  failed  equipment  and by not having  any spares in a  multi-equipment  mode 
(such as  Mars  Orbital  phase  where 2 computers  are  required in the Multi-Computer 
Approach). If all the  equipment has  failed  the  mission is terminated  and  recorded a s  
a  failure. Downtime was  also  recorded  for  undetected  failures  and noted separately 
from  the downtime  identified above. A n  undetected failure  results  in  a  mission  failure 
when a  critical  phase  is  entered. 

If none  of the times  to  failure  are within the first phase,  the  program  generates 
new times  to  failure  for  the equipment which change status (on/off) for  the next phase 
and the  program continues a s  before. 

If when all the phases  are completed  and not all  the equipment  has  failed (com- 
puter  available  for  critical  phases)  the  mission is recorded  as  a  success.  This  pro- 
cess is repeated  a  large  number of times  for  each configuration  and statist ics  are 
accumulated which indicate  probability of success and  availability. 

5.1.1.3  Accuracy, Confidence, and  number of runs 

The  number of runs, N, necessary  to  achieve  a  given  accuracy and  confidence 
in  the  results  can  be found from  the following equation: 

162 



GENERATE Tf2 GENERATE Tf 
Secondary ( d  Prime 01) 

GENERATE  NEW 
A T f l  Based on p 4 

Success 
Change M 

. 
Generate 

Q, Detect ion 
Probability 

F 

W 

Record  Undetected 
Failure - If Critical 
Phase Record Failure 

No d-b Failure  yes 

M: MISSION PHASE 
p ,  n: FAILURE  RATES 'M: MISSION  PHASE TIME 

Figure 5-1. Block Diagram of Monte Carlo Simulation 



where  p is the  probability  to  be  determined, K2 (0) is a  confidence  function  which  will 
be  discussed below and, c is the  allowable error .  

This  equation is derived below. 

The  runs  generated  by  the Monte Carlo  program  are  essentially independent 
Bernoulli trials, Since  Bernoulli trials obey the  binomial  probability  law, it i s  
desired  to  find  the  statistics which describe binomially  distributed  probabilities (see 
Reference  19).  In  order  to  simplify  this  task without sacrificing  accuracy  the  normal 
approximation  to  the  binomial  distribution is  applied. This  states that: 

Where N is  the  number of trials 

f is the  relative  frequency of success of an  event with probability  p of success n on each  trial. 

IN (fn - PI1 
h is  the allowable e r ro r  of JNPO 

0 

This  can  be  rewritten  as 

where 7 i s  the  standard  deviation of the  .results of Bernoulli tr ials 

This  equation  states that:  the probability  that  the  ratio of the  difference between the 
simulated  probability  and  the  actual  probability, (fn - P), and the  standard  deviation, 

( JT), of the  Bernoulli trials is less than o r  equal  to  some  constant  h, is equal  to 

twice  the  positive  normal  distribution of h  minus one. If h = c / y ,  where L is the 
allowable e r ro r  between the  simulated and actual  probabilities,  the  previous  equation 
becomes: 

164 



where a is the confidence  level which is desired then 

a 

which will be  satisfied if 

K (a) can  be found from  a  table of the  normal  curve of error.  If the  value of 1 /2  a is 
found in  the  area column the  corresponding  value in the  t  column is K (a) .  Note that 
for  the  worse  case 

N 2 when p = 1/2  
4 2 

for  p  greater  or  less than 1/2 the  number of trials  (runs)  decreases.  This  means  that 
i f  nothing i-s known of the  probability  that is  being  simulated  the  worse  case  must  be 
used  but if  the  probability  can first  be  estimated the  number of runs  can  be  reduced. 

This equation  can also be  used  inversely,  that is if a number of runs  have  been 
made,  an error  limit  can  be  established  for  a given confidence  level. 

10, 000 runs  were  used  in  the Monte Carlo  Simulation and the  error was  calculated  for 
different  values of p  (from 0.8 to 1.0) with different  confidence  values  (from 0 . 7 5  to 
0.95); these  calculations a r e  shown in Figure 5-2. 

5.1.2 Simulation Results 

5.1.2.1 Introduction 

This  section  presents  the  results  from  the Monte Carlo  reliability  simulation of 
each of the  candidate  organizations. Two items  are to  be  determined  from  the  simu- 
lation: Mission  Probability of Success  and  Computer  System  Availability.  The 
required  goal  for both of these  items  was set at 0.997; this  was  the  value  generally 
used  in  the  references  cited  in  Paragraph 2.1. It should be noted that  probability 
of success refers only to  the  computer  system  and not to  the combined vehicle  systems 

165 



Y 

Figure 5-2. Error In Monte Carlo Simulations 

166 



probability of success.  Probability of success  was identified as being able  to  perform 
the  computations  during critical  phases  (phase 10 Mars  Aerobraking  and  phase 20 
Earth ReEntry). This is the  appropriate  parameter  to  consider  during  these  phases 
and  not availability:  Time  to  replace a failed  module  was  assumed  to  be fixed at  
1/2 hour  for  the  purpose of this simulation (in some  cases a spare module i s  switched 
in  electronically and time  to  repair is 0 for  this  case). 

ThBtwenty  mission  phases  were  grouped  into 15 phases  for  the  simulation,  the 
tabulation below shows this grouping: 

Mission  Phases Monte Carlo Phase 

1,2 Atmospheric  Ascent 
Earth  Orbit  Injection 

1 

3 Trans  Mars Injection 2 

4 Trans  Mars  Coast 3 

5 Trajectory  Correction 4 

6 , 7 ,  8 Spin Up 
Spin Cruise 
De Spin 

9 Mars Approach  Correction 

10 Mars  Aerobraking 

11 Mars  Orbit  Injection 

12 Mars  Orbital  Coast 

13 Trans  Earth Injection 

14 Trans  Earth Coast 

15 Trajectory  Correction 

16,17,18 Spin Up 
Spin Cruise 
De Spin 

5 

6 

7 

8 

9 

10 

11 

12 

13 

19 Earth  Approach  Correction 14 

20 Earth  Re-Entry 15 

The module structure will  be  repeated  here  for  each  candidate  organization, a 
detailed  description of each was given in  Section IV, Multi-Computer:  one entire 
module, Multiprocessor:  three  types of modules,  Input/Output, Processor, Memory, 
Distributed  Processor:  an  array of identical modules. 

167 



The computer  module  useage as a  function of mission  phase is given below: 

Multi-Computer 

Phases 1 , 2  

Phases 3, 5,6,8,9,10, 
11,13,15,16, 
18,19,20 

Phases  4,7,14,17 

Phase 1 2  

Multiprocessor 

Phases 1 , 2  

Phases 3,5,6,8,9,10, 
11,13,15,16 
18,19,20 

Phases 4,7,14,17 

Phase 1 2  

Distributed  Processor 

Phases 1 , 2  

Phases  3,5,6,8,  9,10, 
11,13,15,16, 
18,19,20 

Phases 4,7,14,17 

Phase 12 

One Computer Module  (one memory  section on) 

Two Computer  Modules  (one  memory  section on 
in  each)  (one  computer  in  active  redundancy) 

One Computer Module  (one memory  section  on, 
2nd section  on  intermittently) 

Two Computer Modules (one with  one memory 
section on, 2nd with two memory  sections on) 

One 1/0 Module, 1 Processor module, 1 memory 
module  on 

Two 1/0 Modules,  2 Processor  modules, 
2  memory  modules  on (1 each  in  active 
redundancy) 

One 1/0 Module, 1 Processor module, 
1 memory  module on; 1 memory  module on 
intermittently 

Two 1/0 Modules, 2 Processor  modules, 
3  memory  modules on 

16 groups  on 

1 2  groups on (6 in  active  redundancy) 

16 groups on, 3 groups on intermittently 

24 groups on 

16 8 



5.1.2.2 Tabulation of Results 

Below is a tabulation of the  cases  that  were  simulated and a summary of the 
results 

MTBF on MTBF off 
Case No. (hrs)  (hrs) ’Det Spares 

Multicomputer 

(Spares = number of computer  modules  exceeding 2) 

- 

1  8000  80000 0.99 0 

2  8000 80000 0.99 1 

3  8000 80000 0.99 2 

4 16000 160000 0.99 0 

5  16000 160000 0.99 1 

6  16000 160000 0.99  2 

7 25000 250000 0.99 0 

8  25000 250000 0.99 1 

9  25000  250000 0.99 2 

(Cases 1 through 9 assumed no on/off capability in memory  section) 

11  16000  160000 0.99 0 

12  16000  160000 0.99 1 

13  16000 160000 0.99 2 

14 8000 80000 0.998 1 

15  8000 80000 1.0 1 

16  25000 250000 0.998  1 

17  25000 250000 1.0 1 

21  8000 80000 0.99 0 

2 2: 8000 80000 0.99 1 

23  8000 80000 0.99 2 

24 25000 250000 0.99 0 

169 

PS - 

0.6026 

0.8140 

0.9220 

0.8366 

0.9544 

0.9874 

0.9216 

0.9822 

0.9953 

0.8906 

0.9749 

0.9923 

0.8810 

0.8811 

0.9921 

0.9920 

0.7096 

0.8721 

0.9524 

0.9482 



MTBF on MTBF off 
Case No. firs) Ws) PDet Spares PS 

7 - 
25  25000  250000 0.99 1 0.9900 

27  8000 80000 0.75 1 0.7520 

29  25000 250000 0.99 2  0.9953 

30 25000 250000 0.90 1 0.9646 

31 25000 250000 0.75 1 0.9278 

32  8000 40000 0.99 2  0.9345 

33 16000 80000 0.99 2  0.9895 

34 8000 400000 0.99 2 0.9657 

35  16000 800000 0.99 2  0.9926 

36  25000  250000 1.0 2  0.9995 

37  25000 1,000,000 0.99 2 0.9970 

38  25000 25000 0.99 2  0.9845 

39 16000 16000 0.99 2  0.9456 

40 8000 80000 1.0 0 0.7119 

41 8000  80000 1.0 2  0.9619 

42 25000  250000 1.0 . o  0.9529 

Multiprocessor 

(Spares = Number of the following sets of modules: 1 1/0 Module, 1 Processor 
Module, and 2 memory  moduIes  exceeding  the following baseline  configuration 
2 1/0 modules, 2 Processor Modules  and 4 memory  modules,) 

43 * * 0.99 0 0.8227 

44 * * 0.99 1 0.9593 

45 * * 0.99 2  0.9851 

*MTBFfs on: 1/0 66,700 hrs  

Processor 28,600 hrs 

Memory 20,000 hrs 

*MTBF off = 10 X MTBF on 

17 0 



MTBF on MTBF off 
Case No. firs)  firs) 

46 ** ** 
47 ** ** 
48 ** ** 
49 ** 
50 ** 

** 
** 

51 ** ** 
52 * * 
53 * 
54 * 

* 
* 

**MTBF's on: I/O 208,300 

Processor 89,500 

Memory 62,500 

**MTBF off = 10 X MTBF on 

Distributed  Processor 

'Det 

0.99 
- 

0.99 

0.99 

0.75 

1.0 

1.0 

1.0 

1.0 

1.0 

Spares *S - 
0.9717 

0.9941 

0.9971 

0.9233 

0.9746 

0.9987 

0.8219 

0.9676 

0.9949 

55 *200,000 2,000,000  0.99 

56  *200,000  2,000,000  0.85 

1 0.9998 

3 0.9978 

*GROUP MTBF 

Spares = Number of groups  exceeding 24 

5.1.2.3 Discussion of Results 

5.1.2.3.1 Multi-Computer 

The  results  from  the  simulation  are  given  in  Figures 5-3 through 5-7 for  the 
Multi-Computer  candidate. Figure 5-3 shows the  mission  probability of success (Ps) 
as  a  function of the  number of computers  used,  three  MTBF's  are shown 8,000, 
16,000 and 25,000 hours. In addition,  the  dashed  curve below each  solid  curve  shows 
the  effect of not having  the  capability of turning off part of the  memory.  The  solid 
line  for  each  MTBF  assumed that the  memory  was divided  into two sections with the 
capability 6f turning one section on and off independently of the  rest of the  computer; 
it is seen  that  this  capability had a  significant  effect on the Ps, The  conditions  on 
these  curves  were a Probability of Detection of Failures (Pd) of 0.99 and  an on/off 
ratio of failure  rates (Xon/Xoff) of 10. 

17 1 



Figure 5-3. Multicomputer  Probability of Success 

172 



Figure 5-4. Multicomputer On-Off Failure  Rate  Effects  on Ps 

173 



Figure 5-5. Multicomputer Failure  Detection  Probability  Effects on Ps 

174 



I 

Figure 5-6. Multicomputer  Unavailability 

175 



Figure 5-7. Multicomputer Ps vs Number of Computers  with Pd = 0.99  and 1.0 

17 6 



r .- 

The effects of on to off ratio  in  failure rates are shown in  Figure 5-4. This 
curve shows that the  improvements in Ps with  an  increasing Aon/Aoff ratio are quite 
significant,  particularly with lower on time MTBF's. It is seen that most  improve- 
ment  generally  has  been  realized  in Ps by the  time  a  ratio of 10 has been  reached. 

Probability of failure detection has a limiting effect on P, as  more and  more 
spares  are added. Figure 5-5 shows  the  effects of Pd on a system of 3 computers 
with a A o n / A o f f  ratio of  10. It is seen  that  the  linear  region of this  curve  has been 
traversed  for  the Pd'S  considered  (0.75 - 1.0). Two MTBF's  were  plotted  25,000 h r s  
and 8,000 hrs.  This  curve  points out a significant fact: that  gains  in Ps as function 
of Pd are linear,  that is, an  increase  in  Pd  from 0.95 to  say 1.0 produces  a  linear 
gain in  Ps, which is the  same gain in  increasing  Pd  from 0.80 to 0.85. 

It was mentioned previously  that  Availability  was  the  other  parameter of con- 
sideration. Downtime was  accumulated  due to two factors:  time  to  replace with a 
spare and the  time  that  the  full computing capability  was not available  (for  example 
1 computer only working during  phase  12,  Mars  Orbital, when 2 are required). 
Availability is defined by: (Mission  Time - Down Time) / Mission  Time. Down time 
was  very low and  to  visualize  the  large  numbers  for  availability,  unavailability  was 
computed in  its  place so that a semi log  plot  might  be  constructed.  Unavailability is  
simply Down Time/Mission  Time,  the  results  are shown in  Figure 5-6 for  a  Pd of 
1.0 and A o n / A  off = 10. 

Figure 5-7 contains  a  comparison of Ps vs  the number of computers  for a 
Pd = 0.99 and Pd = 1 .0 ,  the  limiting  effect of Pd is seen  as  more  spares  are added. 

5.1.2. =Multi-Processor 

The  results of the Multi-Processor  Simulations a r e  shown in  Figures 5-8, 5-9, 
and 5-10. It  should be noted that  considerably  less  points  were  obtained  for  this 
candidate,  this is due to two factors: 1) the amount of computer  time  to  simulate  this 
system  increases  considerably due  to its added  complexity  in  the smaller module 
breakout and 2) Many  of the results obtained for  the Multi-Computer follow through, 
such as  the A o d A o f f  ratio  effects, and it was thought not worth  while repeating  them. 

Figure 5-8 shows  the Ps vs number of computer  systems  curve,  a  computer 
system is defined here  as an 1/0 module, a  Processor module  and 2  Memory  modules, 
this  basically has the  capability of the Multi-Computer plus  some  additional  features 
a s  explained in  Section IV.  Two MTBF values were considered and the MTBF (on) for 
each of the  modules is  indicated on the  curve.  The  group MTBFA corresponds  fairly 
closely  to  the 8, 000 hr  Multi-Computer  while the group  MTBFB corresponds  to  the 
25,000 h r  Multi-Computer (it should be  remembered  that  the  Multiprocessor  system 
exceeds  the Multi-Computer capability and this is not a true  comparison between the 
two). Again a  Pd of 0.99 was  used  in  this  curve;  to  determine what Ps would be 
achieved with a  Pd of 1. 0 (for MTBFB) a point was  obtained at Pd = 0.75  and a  straight 
l ine projected  (Figure 5-9). Ps then  turned out  to be  1.0 which is  exactly what was 
expected after studying  the results of case 45 (Pd = 0.99) on the  computer  print out. 
This  case showed that there  were no failures  during  the  critical  phases and Ps was 
1.0 prior  to  entering  the first critical  phase and  did not change  until  the  next critical 
phase  was  entered. What this  meant is simply  that  the only failures  occurring having 
an effect on Ps were undetected failures  (an  undetected  failure  did not amount  to  a 
mission  failure  until  a  critical  phase  was  entered with that  undetected  failure). 

177 



Figure 5-8. Multiprocessor  Probability of Success 

178 



Figure 5-9. Multiprocessor  Probability of Failure  Detection Effects on Ps  

179 



Figure 5-10. Multiprocessor Unavailability 

180 



In addition,  points were later generated with a Pd = 1.0 for both  MTBF's  and  also 
plotted  on Figure 5-8. It can  be  seen that Pd is quite a limiting factor as a higher P, 
is approached. 

Unavailability is shown in Figure 5-10 for  the two MTBF's, the  curves  are 
similar to the Multi-Computer except  that .they a r e  considerably  better in terms of a 
much lower Unavailability. 

5.1.2.3.3Distributed Processor 

No curces are plotted  for  the  Distributed  processor  organization  for two reasons 
1) a s  above the  runs  take  considerably  longer due to  the  Modularity involved, 2) the P, 
was expected  to be  very high  due to  the  sparing  capability of modules  left over  from 
non-critical  phases  requiring  large  amounts of modules. 

Two runs  were  made,  each  with  a 200,000 hr  MTBF (on) for  each group,  a  Pd 
of 0.99,  and Xon/Aof f  of 10. The first run  assumed only 1 extra  group  was  provided 
as a spare, ps was 0.99980 and  deviated  from  1.0 only due to undetected failures, 
downtime  was 261.03 hours.  It  should  be noted that  the only MTBF considered  was 
200,000 hrs,  this is considered  a  lower bound  on the  group MTBF  and since P, was 
met  easily with this  value,  higher  MTBF's  were not simulated. 

Another  run was made with a Pd of 0.85 and three  spare groups. This  run 
gives two effects,  the effect of Pd on Ps and the  effect of spares on downtime. P, 
was 0.9978 and downtime was 219 hours. Two important  facts  should  be pointed  out 
here: 1) the  limiting  factor of Pd in  an  organization  like  this  and 2) a new, more 
refined,  definition  for downtime is necessary  since downtime was  accumulated when 
all 24 groups were not operating  during  the  Mars  Orbital  Phase.  Certainly  the  entire 
computer  system is not down and  a  more  reasonable  answer is 23/24 of the  system is 
available  or  some  lower  fraction depending on the functions  being  performed by the 
groups  (since  the  loss of  one  group  may  preclude  the use of another  group, etc.). 

As examples of the  computer  print  outs  associated with each  case,  three  print 
outs a r e  shown in Figures 5-11 through 5-13. It should be noted that downtime is given 
in two columns,  the first ltReplacementtl  is due to  replacing  a  failed module with a 
spare   o r  not having the  full computing capability  available a s  explained  previously,  the 
second,  ''Undetected Failure" is due to having an  undetected failure and still using  the 
computer  system a s  though it were functioning correctly (once a critical  phase is 
reached with an  undetected  failure,  a  mission  failure is scored).  Replacement down- 
time is the  value  used in  computing  availability. The  column  "Total  Equipment  Fail- 
ures"  indicates  this  function  for  the  total  10,000  runs  for  each  case.  The  numbers in 
the downtime columns are the  average  for  each run. 

5.2 CRITICAL EVALUATION  AND  RECOMMENDED APPROACH 

5.2.1 Evaluation of Organizational  Features 

A summary of some of the  organizational  features is given below. 

5.2.1.1  Multi-Computer 

The  principal  advantages of this  organization are the  minimal  number of corn-. 
ponents  and  communication  lines  necessary  per  computer,  a good match of hardware 

181 



. 

P C h T E   C L R L c   S l P U L A m C h  C F  
SPbC.EBORNE  PULTIFPCCESSING  STUDY - C U L T I C C P P U T E R   O R G b h I Z A T I O N  

CASE h* -- S Y S T E C  S T b T I S T I C S  

hliHl3ER GF - H R S .   L V E R I I G E   C C k h T I P E   P E R   M I S S I C N  
I h  C C h T I N U C U S   P R O B A B I L I T Y  

t a r  O P E R A T I C h  OF S L C C E S S   R E P L A C E H E A T   U h D E T * F L I L U R E  

6 m 2 . a  
7 f9C3.2 
B f9C3m 8 
9 3938.1 

15 1cleo.s 

1.ooaoa 
1.00000 
1. 00000 

0.99510 
Om99510 
0.99410 
0.99150 

0.99090 
0.55290 
0.95290 
0.c5290 

0.00150 
0.00000 
0.00185 
o.0aooo 
4.85783 
o.oooc8 

0.00294 
129.06033 

____ 

- Om00196 

"~ 
o.oooao 
O.Ol)QO@ 
0.03006 
0 .,OQbOO 
0 . 00000 

0 . 0000 0 
0.00000 
0.00000 

o .ooooa 

0.001 82 
158.90771 

0.00942 
0.00942 

0.00000 
Om00000 
0.00000 
0 .ooooo 

TOTAL 
E Q U I P M E N T  

F A I L U R E S  

3 5  
9 

41 
1 

9 84 
0 
0 
0 

648 

-" 

- 

- 

0 
200 5 

0 
0 

Figure 5-11. Monte Carlo Simulation of Spaceborne  Multiprocessing Study - Multicomputer  Organization 



C C h T E  C A P L C   S I C U L A T I C N  O F  
SFPC€BCRNE C L L T I F R L C E S S I N G   S T U C Y  - C U L T I C C K P L T E R  ORGbhIZATION 

C A S E  17 -- S Y S T E P  STPTISTICS 

F L M e E E  CiF k R S o  A V E K b G E   C C k k T I C E  P E P  MlSSIOh 
I h  C C h T l k L C b S  PHG8AEILITY 

C P E F A T I E h  O F  S U C C k S S   R E P L A C E M E N T   U k O E T o F b I L U R E  

Pd - 1.0 
3 Camputem 

TOTAL 
EOUIPHENT 

F A I L U R E S  

Figure 5-12. Monte Carlo Simulation of Spaceborne Multiprocessing Study - Multicomputer Organization 



r tLMekH CF F R S .  
I h  C C h T l l v L C L l S  

C P t  F A T  1Ch 

P C h T E  C b H L C  S I C U L d T I C k  C F  
S F F C t B L H N E  C L L T I F F C C E S S I N G   S T U C Y  - C U L T I C C P F L T E R   C R G d N I L A T l O N  

C P S t  -- S Y S T E C   S T b T I S T I C S  

b V E R b G E  C C k h T I C E  F E R  MISSICF;  T C T b L  
P R O B A B I L I T Y  EaurPwur 
CF SUCCESS HEPLPCECEhT U h C E T . F P 1 L U R E   F b I L U H E S  

Figure 5-13. Monte Carlo  Simulation of Spaceborne  Multiprocessing Study - Multicomputer  Organization 



to requirements,  and  relatively  simple  failure  detection  to  a module. The good match 
of hardware  to  requirements results in  an  efficient  use of the  hardware,  and  simple 
failure  detection  to a replaceable  module which in  this  organization is an  entire com- 
puter.  The  executive  program  for  this  approach is relatively  straight  forwarded  since 
each  computer  operates  essentially  as  a  separate  unit on all  programming  tasks. 

Some  disadvantages  with  this  organization a r e  adaptability  to  a  change  in 
requirements,  the  relatively  large  module  size in meeting  reliability  requirements, 
and  difficulty  in  attempting to detect  failures  to  a  lower  level  than  a  computer,  The 
problems  in  meeting  additional  computer  requirements  are  a  severe  disadvantage  with 
this  organization. If there is a need for  increased  computational  capability,  another 
complete  computer  must  be  added, a s  a  result,  a  relatively  small  change in the 
requirements  can  cause  a  large  change  in  the  hardware in the  computer  system. 
Another  problem  area  apparent in the Manned Mars Mission due to  this  limited  flexi- 
bility is in  the  computer  system  for  the  Lander  Vehicle.  The  computer  requirements 
are expected  to  differ  substantially  between  the  Lander and the  Orbiting  vehciles and 
as a  result  considerable  inefficiency is expected  with  an  approach  such a s  this. 

The  module is an  entire  computer in this  approach  and  to  meet  reliability 
requirements by adding spares  means  that  relatively  large  spare  modules  must  be 
added. To  detect  failures  to  a  lower  level is difficult with this  organization if it is 
attempted  to  make  the  modules  smaller. 

5.2.1.2 Multiprocessor 

The  main  advantages  with this organizational  approach  are  flexibility  in  terms 
of expansion  to  a  change in requirements,  possibility of withstanding  multiple failures, 
localization of failures  to  modules  due  to  full  intercommunication  providing  the  ability 
to make good use of spare equipment, less down time due to  replacement,  and  a good 
match  to  the  requirements. 

One of the  most  important  advantages of the Multi Processor  is its ability  to 
expand (or  contract)  in  relatively  small  increments  to  meet  changes in computational 
requirements. For example  in  the Manned Mars  Mission  considered, if in  the  Mars 
orbital  phase 350,000 operations  per  second were  required i n  each of the two proces- 
sors,  this  organization would be  able  to  meet  this  requirement by  adding  an  extra 
Processor module to  the  system. A Multiple  Computer  organization would have to 
add  a  complete  computer  to  meet  these  requirements.  This  change  means  more 
power  and  less  reliability  for  the  Multiple  Computer  system;  whereas  the  power and 
reliability would only  change  slightly for  the Multi Processor  system. Changes of 
this  type may be  required  between  missions a s  well a s  between  different  classes of 
missions  such  as  Mars Landing vs Mars  Fly by. In addition,  the  requirements  for 
the  Lander  vehicle of the  manned  Mars  mission  may  impose  these types of changes  in 
the  requirements. It is obvious from  the above that the Multi Processor  also  has  the 
capability of providing  a  relatively  close  match  to  the  requirements.  The  relatively 
small module size  also  offers  the  possibility of turning  modules on  and off between 
mission  phases  as  computational  requirements  change  with  the  resultant  reliability 
gains  over  a  multi-computer or single  conventional  computers a s  shown in the 
simulations. 

Another  important  feature of the  Multiprocessor is that  due  to  the  relatively 
smaller  size of the  modules  and  increased  intercommunication  capability it is con- 
siderably  simpler  to  isolate  failures to the  module  level.  This  also  provides  the 

185 



ability  to  withstand  certain  multiple  failures.  For  example  in  a  system  containing 
three  memories, two processors, and two I/O modules, it is possible  to  have  any two 
memories  fail,  any one processor and  any  one 1/0 unit  fail  and still construct  a  work- 
ing  system.  This  working  system  could  carry out the  critical  computations of a 
critical  mission phase. It can  also  be  seen that after  a  module  fails it may  be 
replaced  while  the  other  module  takes  over  a part  of its task.  This  offers  the  potential 
of having less &stem downtime  and hence  increasing  computer  system  availability. 

In  terms of disadvantages  the  Multiprocessor  has  some  problems none of which 
are  severe.  The  most  significant  item is that the  number of lines  for  communication 
between  the  modules  increases  considerably  as  the  number of modules  in  the  system 
increases.  This  presents  some  packaging  problems  and may reduce  reliability  due 
to  the  extra  connections.  Another  problem. is that  expansions i n  terms of modules 
are  limited and must  be  anticipated  in  the  design  phase.  Finally  the  software is more 
complex  than  that  for  the  Multi-Computer,  however,  this  increase  in  complexity is 
quite  small. 

5.2.1.3 Distributed Processor 

The  Distributed  Processor  organization  offers  the following advantages:  a  wide 
adaptability  to  changes in computational  requirements due to the  capability  for expan- 
sion  in  terms of quite  small  hardware  increments,  the  possibility of "graceful  degrada- 
tion,It  a good use of the MOS/SOS technology,  and  the  possibility  for high reliability 
and low power  due  to no main  memory  in  the  organization. 

A very  important  feature of this  organization is its adaptability  to  changes in 
requirements.  Additional  groups  may  be added to  the  organization as  required without 
any  redesign of the  system.  Likewise  groups  may  be  deleted  from  the  system a s  they 
fail, of course  all of the  computational  requirements  may not be  met  as these failed 
groups a re  deleted.  However,  the  reduction in capability  may  only  result  in  the 
elimination of a  small  portion of the  computational  task  thereby  resulting i n  "graceful 
degradation" due to  failures.  This  organization  also  makes good use of the  technology 
in that an  entire  cell is mechanized on one MOS/SOS chip and it is this  use of the  tech- 
nology which eliminates  the need for  a  main  memory  thereby  offering  significant  gains 
in  power  and  reliability. It should also  be noted that  reliability  requirements  can  be 
met  relatively  easily  since  the  module  increments a re  quite small. In addition,  these 
spare modules  will  generally  be  located  in  the  same  physical  package as  the  primary 
modules  and  therefore  offer  the  possibility of a  completely  sealed  package  in which 
failed  modules a r e  replaced by electronic  switching.  This  will  also  have  a  significant 
improvement  for  system  availability  since  repair  time is eliminated.  Finally  the 
capability of turning  modules  on  and off has  a  significant  gain  in  reliability  particularly 
in  light of the  very  close  match  to  the  varying  requirements  that  can  be  realized. 

These  advantages  are not realized without some  problems,  some of which are: 
relatively  more  complex  software  and  expansion  capability  must  be  accounted  for in 
the  design.  The  software is considerably  more  complex  for  this  organization a s  
explained  in  Section IV. Some of the  factors  contributing to this  complexity are  the 
increased  executive  functions due to  group  interactions  and  control,  and  the  selection 
of optimum MACRO's and MICRO's. 

186 



5.2.2 Critical  Evaluation 

The  computer  configuration  required  for  each  organization  was  chosen  from  the 
results of Paragraph 5.1.3 to  achieve  a 0.997 probability of mission  success  and  a 
0.997 availability. It should  be noted that Ps was  weighted a s  100 in terms 01 relative 
importance a s  compared  to  the  other  factors  weighted below, this  resulted in  using 
PS as  a  design  criteria  due  to its heavy  weighting. This  resulted in the following 
configurations: 

Multi-Computer 

4 Computers (25,000 hr  MTBF) (2 spare  computersoverthose 
actually  required) 

Multiprocessor 

3 1/0 Modules (208,000 hr  MTBF) (1 spare 1/0 and processor  and 
3 Processor Modules (89,500 hr  MTBF) 2 spare  memory  modules  over 
6 Memory Modules (62,500 hr  MTBF) those  actually  required) 

Distributed  Processor 

27 Groups (3 spare  groups  over  those 
actually  required) 

Some of the  organizations  actually  have  a  probability of success  greater  than 
that required  and  this  could  also  be added in  to  the  evaluation;  however,  all  that  was 
considered  here  was that the  reliability  requirements  were  satisfied. 

The  actual  criteria of importance  for  the Manned Mars  mission which were  used 
to  measure  the  utility or effectiveness of the va ious  computer  organizations a re  given 
below  along  with their  relative  importance  or ranking. 

1. Power 10 

2. Volume 1 

3. Weight 1 

4. cost  1 

5. Development Risk 1 

6. Growth Potential 4 

The first four  objectives of the  system  are  self  explanatory, in general, it is 
desired  to  minimize  them. Development  Risk is defined as  the  probability of meeting 
the  development  schedule  with  a  fixed  design and  within  a  stated budget. This is a 
factor  to  consider when  choosing  amoung  subsystems  with  advanced  state-of-the-art 
concepts o r  hardware, o r  with  complex  hardware. 

187 



Growth potential is also  an  important  objective,  since it is not always  possible 
in advance to predict new o r  improved  sensors.  In  addition,  this  potential  tends  to 
offset development risk,  since it allows  the  possibility of alternate development 
schemes.  This  was defined as the  expected  modification costs  for adding  additional 
hardware  to  the  system. 

Using mathematical  evaluation  techniques,  the  three  candidates  were  evaluated. 
The  techniques and the  actual  mathematical  evaluation a r e  contained  in  detail  in 
Reference  17, only  a summary will  be given here. 

The  characteristics of the  candidates  used  in  the  evaluation included: Power, 
Volume, Weight, Cost,  Development  Risk,  Growth Potential,  and  Flexibility.  These 
characteristics  were  related through  a matrix  to  the  system  objectives. When 
numerical  values are  inserted in the  matrix,  an  expression  for  the  incremental  value 
o r  worth of a candidate is obtained. The  results  were: 

Distributed  Processor: AV = +0.0366 

Multi-Processor: AV = -0.0027 

Multi-Computer: AV = -0.0326 

AV is the  incremental  increase in value of the actual candidate  compared  to  the 
average candidate. 

It is thus  seen  that the distributed  processor  candidate  has  the  greatest  positive 
AV. The  actual  numerical  values  used  in  the  matrix  were  in  anticipation of technology 
for 1980 time  period  missions.  For  current technology the  multi-processor would 
result  in  the greatest AV, since  the  risk and cost  associated with the  distributed 
processor would be  very high. After reviewing  the  values  used  in  the  evaluation, it 
was  decided  to  be  more  conservative  and  question  the  distributed  processor technology 
availability  for  these  missions,  Therefore,  the  multi-processor  candidate  was 
selected  for  further study. I t  was  also  felt  that  this technology would undoubtedly be 
available  for  these  missions,  in addition to being  potentially  available for  earlier 
applications. 

188 



V 1. DETAILED DES IGN OF THE MODULAR  MULTIPROCESSOR 
ORGAN  IZAT  ION 

The  multiprocessor  organization  was  presented and  functionally  described  in 
Section lV. A block diagram of the  organization is shown in  Figure 6-1. The  multi- 
processor  consists of two processor  modules,  three  memory  modules,  and  three 
input/output  modules. These  modules  satisfy  the miss.ion  computational  requirements. 
Expandibility of one more of each  type of module is provided as  indicated by the  dotted 
lines  in  the figure. The  organization  features  full  intercommunication between  modules 
as  described  in Section IV (any 1/0 module  may communicate  with.any  memory module 
and  any processor module may.communicate with any memory  module).  This  section 
of the report will  provide  a  more  explicit  specification of the  contents and  operation 
of each moudle in  the  system along with a  presentation of the system  software and fault 
and error  control methods. 

6 . 1  MODULES 

6 . 1 . 1  Processor 

There  are two processors in  the system  for the Mars  Lander  Mission although 
the  capability  to expand to three  processors is included.  The processors  onerate on 
two's  complement  fixed or floating  point  operands.  They  use  a 500 nanosecond  clock 
with four  clock  times  (bit  times)  per  memory  cycle which gives  a  capability of 
250,000 short  operations  per  second. A condensed block diagram of the processor 
module is given in  Figure 6-2. 

The processor  features,  such  as  instruction  format, index/banking schemes, 
etc. , were  introduced in  Section IV and selected on the basis of programming evalua- 
tions  discussed in that  section. A summary of these  features will be given here  prior 
to  introducing  the  processor  details. 

The processor  instruction  word  format  is shown in Figure 6-3. The first  6 bits 
of the  instruction are  used  for the  operation  code.  Operation  code  extension for 
instructions  that do not require  full  addresses give  the facility  for .many more than 
64 instructions.  The  instruction  uses  a banking scheme s o  that  it is only necessary 
to have an address  decrement  in  the  instruction word.  The banking scheme will  use 
full  length registers  thereby  reducing banking problems. 

One bit,  I, is used  for  indirect  addressing. The format  used  for  the  indirectly 
addressed word provides  the  facility  for  multiple  level  indirect  addressing and indexing. 

Index/banking is accomplished by the B bit and the  T  bits (3) of the  instruction 
word. The B bit is used  to  specify one of two full length registers and the  T  bits none 
or  one of seven  other  full  length  registers  to be used  for  index/blanking. It is important 
to note that  there is no real  distinction between bank registers and index registers since 
they a re  both fu l l  length (18 bits). Any  of the  registers can be added  to the  address 
decrement  to  generate  a full length address  or  certain combinations of two registers 
can be added together and  added to  the  address  decrement  to  generate a full  length 
address. A number of advantages  with this index/banking scheme  were  given  in 
Section IV. 

Two upper  accumulators  are used.  Full  arithmetic  capability is provided be- 
tween the  accumulators and  between  the accumulators and the index/bank registers. 

189 

Ih 



to---- 1 
'1 250 K 
SHORT o p s / s E  

p2 
4 
n 
I p3 I 

I 

I 
L 

BIT PARALLEL 
L"p"a 

"""_ J "" 
1 
I 

I I 
M1 

I I 
M3 ' I M4 M2 

1 
I 

p"A"- 
12 K 12 K 12 K 1 12 KI 

I 

> + . Loor" 
I 

"""_ r""J 

I 
BIT  PARALLEL^ I 

SENSORS 

I 

Figure 6-1. Multiprocessor  Organization 

El STORAGE 

1-1 
PROGRAM COUNTW 

I i 

I I INSTRUCTION REGISTER 

I ADDLR 
INDEXiBANK RECISTLRS 

INDM/BANK REGISTERS 
SHIFT COUNT RU;ISTER I 

I DECODING & CONTROL I I CONTEOL & STATUS 
REGISTWS 1 

I RUilSTERS I TIMING 

Figure 6-2. Processor Block Diagram 

190 



I -  

. .. . 

I 
""." """- 

11 18 

Figure 6-3. Instruction Word Format 

6.1.1.1 Real Time Clock and Interrupt  Features 

6. 1. 1. 1. 1 Clock 

A real  time clock as shown in Figure 6-4 will  be  used  in  each  processor.  The 
lower 25 bits of this clock are  hardware  registers, while  the  upper 18 bits,or  more if 
desired,  are  in  the  memory.  The  hardware  portion is divided  into two sections, an 
18 bit  clock  register (RTC) and a 7 bit  clock  extension register (EXT). The RTC 
register can be  set and read by processor  instructions. Once it is set it will  count 
down to zero and send out an interrupt.  The Ext register can not be read  or  set, but 
it can  be  initialized  to  zero  in  order  to  setup  precise  timing  at  the beginning of a 
computation  phase. Unlike the RTC register  this clock and the  memory  clock count 
UP. 

It should be remembered  from  discussions  in 4.2 of the  executive program 
scheduler  that  the real time  clock is used  to  interrupt a processor whenever it is 
time  to initiate the  highest rate periodic  program;  therefore  the  chosen  approach for 
the  clock is to set the RTC for  the  time  closest below the  highest rate  program's 
period. When .the clock  counts down to  zero it will  interrupt  the  executive  in  order  to 
notify the  scheduler  that  the  specified  period is up. The executive  will  then carry out 
its tasks and then  waste any remaining  time  until it is precisely  time  to start the  pro- 
gram (within 2 ps). Just  before giving control  to  the  program it will  again set the 
RTC to the  proper  period. Note that this method of operation  gives  the  ability  to 
time a period down to 2 ps (one instruction)  even though the least significant  bit of the 
RTC register  has a value  greater than 2 ps. This  fine of precision on the  periodic 
program rates is not necessary if it is possible  to  specify  that  the  chosen  rate  for a 
sensor should  be a multiple of 64 ps, for  example;  however it does  give  the  increased 
flexibility of operating with  any sensor  that  may  have  been  setup  to  operate at almost 
any specific rate (a  multiple of 2 ps).  Therefore, a non-setable  clock,  although 
requiring no executive  action  for  resetting, would not  have  the  full  flexibility of the 
above clock. The only  penalty  actually  payed for this clock  scheme is that  one  must 

191 



. . . . . . -. 

18 BIT MEM. RTC 

-51 DAYS (MAXIMUM 
VALUE) 

s 0.5 p s  
18 BIT RTC * 7 BIT  EXT 4 

b 

16. I1 SEC (MAXIMUM 
VALUE) 

Figure 6-4. Real Time Clock 

in each  phase of computation  keep track of the  time  base of the  memory real time 
clock. This is because  it is incremented  each  period by the  executive  just  prior  to 
giving  control  to  the  highest rate periodic  program.  This is a small penalty. 

The  time weighting of the RTC register depends on the  variation  from  phase  to 
phase in the rates of the  highest rate programs.  This  variation  has not been accur- 
ately  established at this time; however  a  reasonable  estimate  for  the RTC register is 
that shown in  Figure 6-4. This weighting was chosen  to  allow  for  fairly low frequency 
periodic  programs, up to 16.77 seconds, while  not  being forced  to  waste too much 
time  in  order  to handle higher  frequency  programs. A maximum of 64 ps may  have to 
be  wasted, but the  majority of this time is actually  well  spent  in  storing  the registers 
of the  interrupted  program. 

It should also be  noted that  the RTC interrupt should  have a high priority so 
that  accurate  length  periods  can  be  maintained. If a long  wait occurs after the  zero 
interrupt,  greater than 64 ps, a pulse o r  two could  be  missed  causing  the  period of a 
program  to  drift.  This is not  tolerable if it continues  for any  length of time.  There- 
fore making  the RTC of high enough priority  that it will  be  honored within 64 ps 
eliminates any problems. 

A list of instructions  for  the RTC. register is given below: 

(set  real  time (M)-RTC *The  executive  can of course  set 
clock) 41.rs o r  reset the  memory  real  time 

clock by normal  instructions 
accessing  the  memory  since  it 
keeps  track of the  memory  clock 
location. (M) is the  contents of 
memory location M. 

192 



2. E C  

(read  real  time 
clock) 

RTC - U *This  enables  reading of the RTC 

RTC can  be  read by the executive 
with  normal  instructions;  however 
the RTC Ext is not readable. U is 
the  upper o r  lower  accumulator. 

* whenever  desired.  The  memory 

The  programmer will also have the  ability  through  the  LPR  (load  processor 
registers)  instruction  to reset the RTC and the RTC extension  registers (0 -RTC, 
Ext). This will  be done at the start  of a mission  phase when it is desired to  synchro- 
nize  the real time  clock with the 1/0 and with mission  time. 

The  clock  will  run  continuously  while  the processor is operating;  therefore 
starting  the  clock is not necessary though initializing it (resetting) is necessary.  The 
interrupt  mask  register will be able  to  inhibit  the RTC from  receiving  pulses  from  the 
RTC Ext so that  the  clock  can  be  ignored o r  halted  whenever  desired. 

A fill clock will  be  used with the  present  executive  scheduler  since  this  scheduler 
will operate in  a more  predictable  manner if each  periodic  program is of a fixed length. 
Branches within  a program  may  leave  some  free  time  at  the end of some  executions of 
the  program.  Rather than  wasting  this  time by waiting  until  a  fixed time is over  the 
executive  can  check  to see how much time is left. If it is over  some At, a  fill  clock 
can  be set with the time  left  (tl), and background programs  can be  executed for  this 
period.  The  specification of the At depends on the amount of time (overhead) necessary 
to  get  into and out of a  background  program.  128 ps would seem  to be a reasonable 
At, but this  number  can  be  varied.  The maximum t l  necessary depends on the  amounts 
of time  left  over by various  program  branches.  It is clearly  very difficult  to  explicitly 
specify, but a few milliseconds  seems  reasonable. If more  time is necessary  it will 
simply be necessary to reset the  fill  clock  for  another  period.  Therefore with a 
128 p s  At, 32 ms should easily provide a sufficiently long tl.  This  specifies  an 8 bit 
fill  clock  that  gets  its  least  significant  pulse  from  the RTC extension  in  the  same 
manner  as the RTC. Note also  that 8 bits  means  that it can  be  simply loaded from 
the  decrement of an instruction.  The  fill  clock is set and then  counts down to zero 
and interrupts  the  processor.  It  must  also  be  preserved i f  an interrupt  occurs.  There 
seems to be no reason  to  read o r  halt  the  fill  clock with the  present  executive  structure. 

3- - SFC, B 
m-FC if B = 0 *This  provides  for a fixed  load 

(set fill clock) of the FC from  the  decrement o r  
Ulo-17- FC if B = 1 a  load  from one of the accumu- 

lators following a  subtraction and 
comparison. m is the  address 
decrement in the  instruction 
word. 

* 
6. 1. 1. 1. 2 InterruDts 

There are only three  actual  processor  interrupts  presently planned for  the 
system, a memory  interrupt, a real time clock  interrupt, and a fi l l  clock  interrupt. 
The rest of the  situations  that  might  generally  generate  interrupts a re  handled by a 
request  processor  program  that  periodically  scans an I/O status word  in the 1/0 
units. This  approach  was  chosen  since  the 1/0 rates are not high enough to  warrant 

193 



a more  hardware  oriented  system.  The  system  also  includes a two-bit interrupt 
mask  register so 'that  the real time  clock o r  fill clock  interrupts  can  be  masked by 
the  executive.  The 1/0 unit can  also be interrupted, but this  situation  will  be  dis- 

' cussed in 6.1.3 with the 1/0 unit  presentation. 

The  highest  priority  interrupt is the RTC zero  transition  interrupt. On the 
occurence of this  signal a flip  flop is set, and the  executive  will be entered  after  the 
present  instruction is completed. This  signal  notifies  the  executive  that it is time to 
setup  execution of the  highest rate periodic  program and to  update  the  memory real 
time clock. 

The  second  highest  priority  interrupt is the "no response"  interrupt.  This 
interrupt  sets a flip  flop in the  processor and notifies  the  executive  that  the  processor 
has not received a response  from  the  addressed  memory.  This  will  be  caused by a 
one  shot noting a failure of the  memory  to  respond  to a request within 14 ps o r  bv a 
lockout  being on to  this  processor.  Fourteen P S  was  chosen  for the no response  failure 
time to allow for  two other  processors to receive two memory  cycles  appiece (IO instruction) 
and three 1/0 units  to  receive  memory  cycles.  This is a worst-case  situation with the 
maximum  number of modules in the system. The executive  will  take  over  after  the  interrupt 
and  check  to see what caused the no response  condition. If a failure  has  occured the failure 
status word will be  updated if necessary and the  appropriate  reconfiguration  operations 
initiated. If a processor is simply  correctly locked  out of a memory, a new program 
will  be  scheduled. 

It  notifies  the  executive  that a time  gap  due  to a branch in a program  has been  filled 
with background. The  executive  will then either call the next  periodic  program o r  
will  reload  the fill clock if the  initial  time  gap  was  greater  than  the 32 ms capacity of 
the clock. A flip-flop is also set on the  occurence of this  interrupt and the  executive 
will  again  be entered after the  present  instruction is completed. 

The  third  interrupt, of lowest  priority, is the fill clock zero  transition  interrupt. 

When any of the above interrupts  occur, a status word for  the  interrupted 
program  must be stored in the  memory.  The  status  word  will  be  automatically  stored 
in four  sequential  memory  locations,  regardless of the type of interrupt,  specified by 
a hard-wired address  in  each  processor and the  processor's  primary  memory  register 
(a two bit  register  in  each  processor  specifying which memory  module  serves  as  the 
primary module for this processor).  The  contents of the  five  location  status  word is 
shown below. The  use of the  specified  registers and flip  flops  will  become clear 
after  reading  Paragraph  6.1.1.3. 

Location  Contents 

1) P (Program  counter) 

2) B1 (Bank register one) 

3) L (Lower  accumulator) 

4) T1 (Tagged register one) 

5) 
Fill 
clock (control  word) 

10 - 13 14 - 16 
Interrupt  Arithmetic  Processor 

194 



Explanation of bits  in 5) 

8-9 01 Fill clock interrupt 
u) No response  interrupt 
(Storing  the real  time  clock  interrupt is not 
necessary  since it has  the  highest  priority) 

10-13 0001 G (Greater than) 
0010 L (less than) 
0100 E (equal) 
1000 0 (overflow) 

14-16 001 FM (Floating  Point Mode ) 
010 RM (Repeat Mode) 
l00 LS (Load  Status) 

The  status  words shown here  must be  picked up by the  hardware s o  that an executive 
program  will be able  to  gain  control of the  processor without  losing the status of the 
interrupted  program. The explicit  sequence of operations  that  occur following an 
interrupt  are given below. It  should be noted that an interrupt may  occur  at  anytime; 
however, no interrupt action occurs  until  the  present  instruction is complete  (for 
repeat  instructions only the present  instruction  cycle  will be completed no repeat 
cycles will be executed). 

1. After the  present  instruction is complete  the above status word is stored 
in  five  consecutive  memory  locations by the  hardware.  The  initial  storage 
location for the status word is specified by the fixed wired  address and 
primary  memory  register.  This  address is loaded  into  the program  counter 
after  it  has been transferred  to  the  memory buffer register.  The  program 
counter is then used  to  address  the  memory  for  five  sequential  write  cycles. 
The  five  cycles load the above status words. 

2. The  contents of the  sixth  location following the  wired  address is picked  up 
and placed  in  the  program  counter.  This  location is used  as a jump into 
the  appropriate  executive  routine. Note that a different  executive  routine 
can  be  entered  for  each  type  interrupt  even though all interrupts  use  the 
same  storage  locations  for  the  status  words.  The  program  counter is 
simply  used  directly  to  jump  for  the real time clock  interrupt, it is 
incremented  once  for  the no response  interrupt, and it is incremented 
twice  for  the fill clock  interrupt. 

3. Each  executive interrupt  routine  that is now entered  must first move the 
status words  to an appropriate  storage area. This is done so that  future 
interrupts will not destroy  the  stored  information  before  the  interrupted 
program  can  be  restarted.  The  executive  will then pickup the rest of the 
processors registers and place  them in the  same  storage area. These 
registers, U1, U2, B2, and T2-T7 are all directly  addressable. When all 
the  processors registers have  been stored  the  appropriate  interrupt  flip 
flop is reset and the  executive will begin the tasks associated  with  the 
interrupt. It should also  be noted here  that in order to store  the  complete 

195 



set of registers  the executive does  not  have  to alter any of the  processor 
registers not automatically  loaded  into  the status word. T1 and B1 a r e  
simply  loaded with bank addresses so that all the  other  processor  registers 
including  those  in  the  memory  (status  word)  can  be moved directly  to any 
area of memory  desired. 

The  sequence of actions  that take place if a higher  priority  interrupt  occurs 
while a lower  priority  interrupt is being  processed  must now be  specified. In this 
situation  the  higher  priority  interrupt  takes  control of the  processor  after completion 
of the  present  instruction. If the initial five status words  have not all  been  stored, 
the new interrupt  completes  this  process and  then  jumps to  its  executive  routine. If 
these  words have  been stored,  the  hardware  will  use  the  hardwired  address  plus  five 
to pick up the jump for  the  priority  interrupt.  The  executive  then  takes  over and 
begins storing  the status word in  the  normal  manner. Note that  in  the latter case the 
existing  status  word  (setup by the earlier interrupt) and processor registers can  be 
stored  since  each  interrupt  executive  routine  does  not  change  any of these locations 
until after it  has  turned off its  interrupt flip-flop. (While the flip-flop is "on" the 
executive is only involved  in storing  the  complete  status word in an appropriate 
storage  area. ) The above sequence of events  means  that when the  originally  inter- 
rupted  program is returned  to  the  processor,  it  will  be  immediately  interrupted by 
the  lower  priority  interrupt.  This is of course  simply  the  original  interrupt  trying 
again  to  get  processed. 

The interrupt  process  discussed above  may take  greater than 90 ps to store  all 
fourteen  processor  status  words in a specified  storage  area.  This would be  a  worst 
case time if both processors  were  using  the same memory  (each  processor would get 
one half the  memory  cycles) and if each 1/0 unit  was  to  request a  cycle. This situa- 
tion is unlikely if the  programs are carefully  allocated; however i t  could occur 
especially if a third  processor  were added  to the  system.  This  situation would cause 
no problems  unless a periodic  program  was  waiting  for execution. The only time 
that  this  situation  exists is when the  real  time  clock  interrupt  occurs. A little 
careful thought as follows will show this to  be  the  case. If a no response  interrupt 
occurs  during a periodic  program  execution,  the  system  has  definitely  failed  since 
a periodic  program cannot be locked out of its own primary  memory.  Therefore  the 
processor-memory  combination  will  be  turned off and the  astronauts notified. If 
a fill clock interrupt  occurs and a periodic  program is to  be  executed  next,  the 
other  processors are locked  out of this  processors'  memory  since  periodic  programs 
must  already be processed.  (Remember  that  the lockout is on any time  periodic 
programs are being  executed or  a critical computation  phase is taking  place. ) As a 
result  the  interrupt and executive  routines  will  be handled directly by the  memory  in 
less than 50 ps. In order  to  limit  the  storage  time when a real time clock interrupt 
occurs,  the  memory lockout is simply set at the  time this interrupt  occurs.  The 
storage sequence  will  then  take a fixed  length of time  to be  executed  (approximately 
46 ps).  

The only part of the  interrupt  process  not  yet  specified is the method of loading 
the  processor  to restart an interrupted  program.  The  addressable  registers U1, Us, 
B2, and T2-T7 a re  loaded  by instruction.  The  same  basic  hardware  that  was  used 
to  store  the five interrupt  status  words is then used  to  read B1, L, TI,  the  control 
word,  and P from five sequential  memory  locations. A load status command (LDS) 
that  loads  the  program  counter  with  the initial address of the  five status words is 
used  to initiate the above sequence of operations. 

196 



r- 

Program completion interrupts have  not  been  included  in  the  above since  jumps 
to  certain  executive  routines  will  be  placed at the  end of the  programs.  Internal 
failure  interrupts  from self-check  routines o r  hardware  have  also not been  included 
(except for  the no response  interrupt)  since  the  failure detection  studies of Section IV, 
4.2 specified  that  the  processor and a memory  or 1/0 unit  be  turned off after the 
detection of any internal  error.  These  failures will also set failure status flip-flops 
in the 1/0 units. 

An arithmetic  interrupt  may  be  necessary  for ground  checkout,  but it does not 
Seem  to be useful for  the  operational  phases of the  mission.  Therefore its inclusion 
should be investigated along with any ground  checkout studies. 

A need for  external  interrupts  (this includes  any  external  sources, e. g. console, 
vehicle  subsystems, etc. ) i6 also not  foreseen  at  this  time. The requests and signals 
that could be considered  interrupts  will  instead  set flip-flops in  the 1/0 units. This 
status word in the I/O unit  can be set  by requests  from  scientific  experiments  or  from 
the  astronauts, and by external  failure  signals  from  the  various  system  modules. The 
status word  will be periodically  monitored by the  executive, and the  requests  passed 
to  the  request  processor  program and executed as  necessary. A s  an example of the 
above procedure  consider what  happens when the  failure  bit of a status word is set  
indicating  a  failure of processor No. 1 and/or  memory No. 3. These  modules will 
first be turned off. The correctly  operating  processor  will  detect  this  failure when 
its  present round of periodic  programs have been completed. It  will than make  the 
highest  priority background program the  diagnostic  program  to  localize  a  failure to 
a processor or a  memory. 

6.1.1.2  Instruction  Set 
This  section  gives  the  instruction  set  selected  for  the  multiprocessor.  The set 

was  chosen  from  a  larger  list  initially  generated and  given in  Reference 18, the  third 
quarterly  report. 

The  operation times  listed  for  each  instruction  assume  a 2 ps memory  cycle. 
This  cycle  time and its  relation  to  the  processor  are  discussed in Paragraph  6.1.2. 
on the  memory. This  discussion  points out that  the  execution times  for a number of 
instructions could actually be decreased  since  the  desired  memory (1 ps access  time 
and 2 ps cycle  time)  will  probably  actually  have a 1. 5 ps cycle  time;  however,  since 
the  explicit  control  unit and control  sequences have not been  designed  yet, only 
approximate  instruction  execution  times  using a 2 p s  memory  cycle are given in  the 
following list. 

The following abbreviations are used: 

Repeat Mode: RM 

Floating  Point Mode:  FM 

Address  Decrement: m 

Address  after banking and/or indexing: M 

Contents of addressed  memory position: (M) 

Replaces: - 
197 



Upper  Accumulators,  Lower  Accumulator: U1, U2, L 

Accumulators: A 

Index/Bank registers,  accumulators:  R 

Memory  Buffer  Register: MB 

Index/Bank Registers  specified by T  bits: Tn 

Index/Bank Registers  specified by B  bit: BO, B1 

Program  Counter: P 

n  position  left  shift of A: LAn 

n  position  right  shift of A: RAn 

n  position  left  cycle of A: LA: 

n  position  right  cycle ofA: RA: 

In order  to show the  primary  tasks  carried out in each  bit  time of an  instruction, 
the  instruction and operand  cycle of the "add" instruction  are given below. 

Add (4 p )  

Bit  times 1 

- 

P to  memory 
(set up inst. 
address) 

1 

MB to  mem- 
ory (Set up 
operand 
address) 

Instruction  Cycle 
2 

memory  to MB 
(processor  receives 
instruction) 

Operation  Cycle 

2 

- 

memory  to MB 
(processor  receives 
operand) 

3 4 

m + B " M B  MB + Tn-MB 

(Set  up  oper- 
and address) 

P +  1-P 

3 4 

U + MB-U 
(addition 
performed) 

It should  also  be  noted  that two columns, RM and FM, are included  in  the 
instruction list in order  to show  which instructions can be  executed in the  repeat 
mode o r  floating point mode. The  instructions  not  checked in the  columns can be 
used in the  special  modes,  but  they  will be executed as shown for  the  normal mode 
of operation.  The  floating point mode of course  uses all double  length  words. 

Operation  times  for  the, repeat mode  depend  on the  number of operands  to  be 
processed.  For  example,  for  a list of n  operands, a repeat  mode  instruction would 
take 2 ps plus  n times the  execution  time  for  the  instructions  operand  cycle.  The 
operation  times  for  floating point instructions are very dependent on the amount of 

198 



hardware added to  speed  the  instructions up. Since  the requirements  for floating 
point operations are not explicitly  specified, no operation  times  will  be  given  for  the 
floating  point  operations;  -however, as an example an implementation of a simple 
floating  point add and multiply  operation  using  the  existing  multiple  registers  was 
investigated. This add operation  takes  25 ps and the  multiply 40 ps. These  operation 
times could easily  be  decreased by  adding  additional hardware if future  requirements 
studies dictate this. The  functional  operation of both the  floating point  and repeat 
modes are discussed  in  greater depth in Paragraph 6.1.1.3. 

6.1.1.2.1  Arithmetic and Logical  Instructions 

1. ADD RM F M  - 
=U(') (M) + U - U *Since the  memory  contents X X 

- 

- 4 ps (2 memory  cycles) are loaded  into the  memory 
buffer  register  the  actual 
add is between the MB and the 
accumulator.  The add opera- 

I tion  itself  takes 500 ns. 

2. ADD - register  to register (Op code  extension) (2) 

ADR R1 + R2- R1 *This  instruction and all 
other  register  instructions 

shown below. 
- 2 PS use  the  register  format 

Register  Instruction  Format: 

1 : 6  7 : 14 15 : 18 
OP Op code Registers 
Code extensions 

1 : 6 - These  bits are always  the  same.  They  use one of the  available 
64 op codes  to  specify  the  register  class of instructions.  The 
explicit  instruction is specified by 15:18. 

7 : 14 - Bits 7:lO specify R 1  and bits 11:14 specify R2. In  instructions 
using only  one register, only bits 7:lO are of interest. A s  
mentioned earlier R could be any of the Index-bank registers  or 
accumulators. 

15 : 18 - These  bits  specify  the  register  instruction  to  be executed. 

The  capability of using  the index-bank registers and accumulators in register 
operations  costs  very  little  in  terms of hardware; as a result this full  capability 
has been included. Note  .that full register to register operations  have  been 

Recall  that  the  accumulator  bit  can  make ADU either ADUl o r  ADU2. 

(2) A l l  instructions  labeled "register to register' '  or  "register" will be implemented 
by op  code  extension. 

199 



included even though present  evaluations show little need for  more  flexibility 
than register to  accumulator  operations. However  only a minimum of usage is 
necessary  to  warrant  the  small amount of extra hardware. 

3. and 4. Subtract - same as  1 and 2. - RM - F M  

5. 

6. 

7. 

8. 

Complement - register 

COR - R1- R1 *Floating Pt. would com- 
plement R1  dnd R2 (if this 
mode is desired  here) 

Multiply 

E U  (M)xU-U, L *A two bit  at a time X X 
multiply will  be  used. - 1 0  ps 

Sum of Products Multiply 

*Note that  this is a full 
length sum of products 

possible with only one 
accumulator. 

- 1 0  ps multiply. This is not 

Multiply - register 

MPR R1  X R2-R1, L *The  only restriction is 
that R1  o r  R2 do not 

additional restriction 
that R 1  is U1 o r  U2 
could save  some  control 
hardware complexity. 

- 8 ps include L. Placing  the 

9. Square - register 

- 8 ps 

10. Divide 

DIU - U, L f (M)-U quotient 
L remainder - 14ps 

*This  time is for a 
straight one bit at a time 
divide. 

X X 

X X 

200 



11. Divide - register 

DIR - R1, R2 + (MB) -R1 quotient 
L remainder - 12 ps 

*Adding the  restriction 
that R1 and R2 are only 
U1, U2, and L would 
simplify  the  control 
hardware. 

12. And 

- ANU (M) - U-U 

13. And - register  to  register 

ANR R1 R2-R1 

- 2 I.rs 

14. and 15. Or - Same  forms as And 

16. and 17. Exclusive Or - Same  forms as And 

18. Absolute  value - register 

Register  Transfers 

19. Exchange - register to register 

EXR R1- R2 

20. Transfer - register to register 

TRR - R1- R2 

- RM FM - 

X X 

201 

I 



Shifts 

The shift instructions  use a special  format as shown below. It  should also  be 
noted that on all  non-cyclic  right shifts the  sign is spread;  whereas  non-cyclic 
left  shifts  insert  zeros. 

. . .  . - . ~  

1:6 17 : 18  12 : 16 9 : 11 7 : 8  

OP Op Code Shift Index Register 
Code 

1 : 6 - These  bits  are always  the same. They use  one of the  available 

Extension count Tag - Tn Specification 

64 op codes  to  specify  the  shift  class of instruction.  The  explicit 
shift instruction is then specified by 17:18. 

7 : 8 - These  bits specify the register to be shifted. Note that  the index 
registers could also be shifted, but this  feature is felt  to  be of 
little value. 

01 u1 

10 u2 
11 L 

9 : 11 -  his gives  the index register  to be  used  to index the  shift count. The 
index for the shift count is in  bits 14:18 of the  specified index register. 

12 : 16 - These  bits  specify  the amount to  shift  the  indicated  register  up  to 
a 32 position shift. 

17 : 18 - These  bits  specify  the shift instruction  to  be executed. 

21. Short Right Shift 

- SRS R A ~ - A  
( 2 # S +  # S  

n-1 (i)) 

(same time for all *Note that  floating  point 
shifts) mode can be. used  to  convert 

the  short shifts to long 
shifts with  L as the  right 
hand register. 

22. Short Right  Cycle 

SRC - RA:-A 

- SLS LA”-A 

23. Short  Left Shift 

- RM FM - 
X 

X 

X 

(1)This  number  and all shift execution times  may  be  shortened  considerably by  putting 
In hardware  for  group shifting. The  need  for this feature should be investigated in 
the  future. 

202 



24. Short Left  Cycle 

SLC - LA: - A 

Load and Store 

25. Load U 

26. Load Address - register 

LDA M-U - *This  instruction is of 
value when used  for gen- 
erating  indirect  addresses. 

27. Load B Registers 

LDB, B, Tn (M) -B *B is either  register B1 or 
B2 M = T  + m  n 

4 PS - 
28. Load Tagged Registers 

LDT, B, Tn (M)-Tn *Tn is any one of the tagged 
index-bank registers. 

M = B + m  

29. Load Immediate 

LDI, B, T m "B - if  Tn=  000 *This  instruction is useful 
for loading  the index-bank 

m -T if T * 000 registers when they are 
being  used  for indexing n- n 

- 2 PS only. 

30. Store U 

31. Store  Zero 

" 
RM FM 

X 

X X 

X X 

*This instruction is useful X 
in the  executive  scheduler 
routine  for  setting  up  the 
chaining  between  programs. 

203 



32. Store  Decrement 

STD - 
- 4 I.ts 

33. Store  B  Register 

STB, B, Tn B-(M) 

M = T   + m  n 

- 4 P S  

34. Store T Register 

STT, B, Tn Tn-(M) 

M = B + m  

*This  instruction is useful X 
for changing decrements in 
instruction  words. 

*This  instruction could  be X X 
made as fast as 4 ps if  it 
is considered  useful 
enough to add another  mem- 
ory  processor  interface 
line;  otherwise it will take 
6 ps. The 4 ps execution 
time  takes  advantage of the 
1 ps access of the NDRO 
memory. In any case if 
used  frequently  this  instruc- 
tion  will save  time and 
storage. 

36. Transfer Memory  to  Memory 

TMM, B, Tn (MI) - (M2) *B + m  gives  the  address of X 
MI and Tn  gives  the 
address of M2. The 

ory  cycle and some  storage; 
however its  real  value  will 
come with use in the  repeat 
mode to  transfer blocks of 
etorage. 

6 P S  - instruction  saves a mem- 

204 



Control  Operations . 

37. Unconditional Jump 

- J M P  M-P 

38. Jump on Minus or  Zero U 

JMMU U 5 0 M-P *This  instruction could  be 
included  in the JMC instruc- 
tion 48; however, it is used 
frequently enough to be 
included directly.  This of 
course  decreases execu- 
tion time  for  this 
operation. 

_I I”  

2 PS - 

39. Jump and Set Index 

JSX, Tn P -Tn 

M + B - P  

*This  instruction is for 
subroutine linkage. It 
must  be  preceded by a load 
bank, if not indirected, in 
order to setup B with the 
proper  subroutine  address. 
If indirected  relative to B. 
the  proper location of the 
subroutine  can be kept  in 
the  working storage region 
for  this  program.  This 
latter  approach is the  most 
convenient. Note that  the 
command also  stores  the 
return  address in  an index- 
bank register. A J M P  
instruction indexed by the 
same index-bank register 
will  return back  to the 
original  program  exit  plus 
the  displacement  (m). 
This  instruction is con- 
venient if it is desired to 
have  the  calling  sequence 
(subroutine  parameter 
values) in the  program bank 
after  the JSX. (For example 
the  periodic  programs may 
obtain  the 1/0 variables and 
place  them  here. ) In this 

205 



40. Jump and Store  Return 

- JAS p - (M) 

(M+l)  - P 

* 

41. Decrement and Skip on 
Tn comparison 

JXTC, B, T, Tn-1 -Tn 

case the  loaded index regis- 
ter can  also  be  used by the 
subroutine to get at the 
calling  sequence. 

*With this  instruction  the 
working storage  has a place 
for  the  return  address above 
the  location  that  contains  the 
subroutine  address. While 
in the  subroutine,  the  same 
bank-index register  that is 
used  for working storage 
reference can  be  used  to 
get  at  the  calling  sequence 
in  the working  storage. 
The  setting  up of the sub- 
routine  address in P does 
not have  to be indirected 
but it is shown this way 
since it is easiest. 
Another  approach would 
use a bank register  set 
up so that Tn would 
address  the subroutine. 
The  jump would then 
load this index  in the  pro- 
gram  counter  aid  use 
B + m to store  the pro- 
gram  counter.  This 
method would take only 
4 ps,  but it would require 
setting up  Tn first. 

*The register  to  be com- 
pared is first  decremented 
by one. This  instruction is 
good for counting down a 
register  that is being  used 
as an index  and bank 
register. 

206 



42. Decrement and Skip on 
B comparison 

DSBC, B, Tn B-1-B 

if  B 5 (M) -. 

then P + 2 - P  - 
M = T   + m  n 

- 4 PS 

43. Decrement and Skip on 
Immediate Index Comparison 

DSIXC, B, Tn  Tn-1 -Tn 

if T s m  1 i f  Tn # 000 n 

B- 1- B 

if B S m  
" 1 if T~ = ooo 

P + 2 - P  

44. Compare 

C M P  u>(M);1- G;O "E, L *This  instruction  requires 
the  inclusion of G, E, and 

processor. 

- 
U =  (M); l -E;O  "G,  L  L flip  flops in the 

U < (M) ; l -   W-G,  E 

45. Compare  Immediate 

CMPI R > m,l-G,O-E,  L *The B and Tn bits  are 
decoded so that  thev  will 

R = m , l -   E , o - - G ,  L indicate  one of U1,  U2, 
L. B. o r  T-. 

- RM 

X 

207 



46. Compare B Registers 

CMB  B > (M);l--G, 0-E, L 

B = (M);l -E, 0 -G, L 

B < (M);1 --L, 0 -G, E 

M = T   + m  n 

47. Compare  Tn  Registers 

CMT Tn > (M), 1- G, 0 --E, L 

Tn =(M), 1-E, 0 - - G ,  L 

Tn<(M),l-L,O-GG.E 

M = B + m  

- 4 PS 

48. Jump on Conditions 

JMC, B, Tn If any condition 
true then 
B + m-P 

49. Compare and Skip 

- CAS U > (M);P + 1-P 

U = (M);P + 2- P 

U < (M);P + 3-P 

*Tn  holds a masking  bit 
for  each condition. The 
conditions  can  be L, G, 
E, 0 (over flow), or  I/BL 
(I/O busy or  locked out). 
These conditions a re  held 
in flip  flops  in  the Pro- 
cessor.  The  masking Tn 
bits are "anded" with the 
respective conditions in 
order  to  determine a jump. 

*This instruction could  have X 
been  made non-indexable 
with  Tn, and then used  the 
Tn registers for a branch 
on the conditions. 

208 



50. Compare Absolute 
Greater and Skip 

CAGS I W I  > p J ) I  *This is a useful  instruc- 
tion for  scientific  experi- - then P + 2 -P ment  data  compression. 

51. Compare  Tolerance 
and Skip 

CTS If U + L 2 (M) 2 U-L *This  instruction is useful - - in status monitoring and 
then P + 2 - P  data  compression. 

- 4 PS 

52. Compare-Register 

CMR R1 > R2.1-G, 0-E, L 

R =  1 R2, E, 0 

.L, 0 

G, L 

,G ,  E 

53. Increment  Tn  Registers 

INT, B,  Tn Tn + (M) - Tn  *This  instruction is useful 
for moving  up and  down 
lists, and for handling the 
addresses in matrix 
manipulations. 

M = B + m  

4 PS - 
54. Decrement Index-Bank 

Registers and Skip 

DXS, B, Tn  Tn - m - Tn 
if Tn # 000 

T 5 0  P + 2 - P  n 

B - m-B 
if Tn = 000 

B S O  P+2-P  

209 



55. Decrement and Jump on 
Tn Greater Than Zero 

DJTZ, B, Tn Tn - 1-Tn 

Tn > 0, M -P 

M = B + m  

* 
56. Decrement and Jump on B 

Greater Than Zero 

M = T   + m  n 

57. Execute 

EXC (M) - MB 

58. Repeat 

REP (MI “7 

M = B + m  

*This  instruction  initiates  the 
repeat  mode  for  the  instruc- 
tion  following it. A repeat 
flip  flop is set and  an  index- 
bank register, T7, is loaded 

*This  instruction sets up 
the  address of the next 
instruction in the  memory 
buffer register. The  pro- 
gram  counter is not incre- 
mented for this instruction. 
It  will then  be incremented 
and used  to continue the 
normal  instruction flow after 
the  instruction  addressed by 
the  execute  (unless  this 
instruction is a jump). The 
execute is then  just a  one 
instruction jump. It should 
be  noted  that  this is the only 
instruction  that  does not 
leave  the  memory  buffer 
empty  after its completion; 
as a result it is non- 
interruptAble. 

210 



with the  number of 
operands  to  be  processed. 
This  register is counted 
down to  zero and the 
repeat mode terminated. 
T6 is also  used  to hold the 
program  counter  during  the 
execution of the following 
command in the  repeat 
mode. A functional  descrip- 
tion of the  repeat mode is 
given  in the next section. 

59. Repeat  Immediate 

REP1 m -T7 

60. Set  Real  Time Clock 

- SRC (MI -RTC (1) 

61. Read Real  Time Clock 

- RRC (register) RTC -U (1) 

- 2 PS 

62. Set Fill Clock 

SFC,  B  m -FC B=O (1) 

Ul0 - 17-FC B=l 

63. Load Status  Address 

" 
LDGA (M) -P 

1 -Is 

*Same as  58 except for 
immediate loading of T7. 

*This  instruction  loads 
the  program  counter with 
the  initial  address of five 
status  words  that  will 
then be  automatically 
loaded  into  the  processor. 
LS is the  load  status  flip 
flop in the  processor  that 

("See section  6.1.1.l(a)  for  comments on these  instructions. 

211 



64. Call 1/0 

- CIO (M) -I/O 

(M+l) - 1/0 

6 s  

is used  to start the  loading 
operation.  Since  the  status 
word  addresses will be 
picked  up from an executive 
table,  there is no need  to 
indirect  this  instruction. 
The  instruction  operation 
was  explained in para- 
graph  6.1.1. l(b). 

*This  instruction is used  to 
send two control  words  to an 
1/0 unit  in  order  to  start an 
1/0 operation.  Bit 17 of the 
address is set  to one  in 
order to  specify  that  the 
memory  contents should  be 
sent to  the 1/0 unit. The 
1/0 unit  number is specified 
in the first two bits of the 
control word. A full explana- 
tion of this  instruction is 
given  in  paragraph  6.1.3 
on I/O. 

65. Load Processor  Registers - 
register 

- LPR MB7 = 0 then reset  all *IF the  corresponding  bits 
flip  flops in MB8 to MB13 a re  one  the 

MB7 = 1 then set  all or   reset  depending on MB7. 
appropriate  flip  flops are   set  

flip  flops If the  bits are 0, nothing 
occurs. An explanation of 
the  flip  flops is given  in 
paragraph  6.1.1.3. MB8, 9- PMR 

MB1O, 11- IMR 

MB12-  FM 

MB13- F 

MBI4 = 1 then 0 - RTC, 
RTC EXT 

212 



66. Load Lock Out - register 

- LLO MB7 = 1 then set *MB8 9 give  the I/o unit 
lockout  and IdB10,11  .give  the 

memory  unit  to be locked 
MB - 0 then reset out o r  enabled. Upon 

- lockout receipt of the  instruction 
the  processor  immediately 
sends a "1" signal back  to 
the  memory on its lockout 
line.  The memory then 
uses  bits 8, 9 in  its output 
data  register to store  the 
1/0 unit  from which it will 
receive  requests. It also 
uses bit 7 to  decide on 
setting o r  resetting  its 
lockout registers.  This 
operation  takes  effect 
before  the next memory 
cycle.  The 1/0 unit is also 
sent a  signal by the memory 
notifying it  that only this 
memory is to  be used. 

It should be  remembered  that  some of the  instructions  presented above are  
register to register  instructions;  therefore  these are implemented by op code 
extension. A large  number of these  instructions have  been  included  to  give  added 
flexibility.  Some of the  instructions given above do not require an accumulator 
specification;  therefore,  these  can  make use  of the  accumulator  bit  for  further op 
codes. In addition some  instructions do not require both  the accumulator  specifica- 
tion and the  indirect bit for  indirect  purposes;  therefore  these  bits may be  used to 
increase  the op codes.  (The  immediate  instructions are  good examples of this. ) 

A 5 bit op code and an accumulator  bit are  used  for  all  instructions  where  it 
is possible to use  the two accumulators;  for  the  other  instructions  the op code  will 
be  considered  to  be 6 bits. (This distinction is only of real  importance  to  the 
hardware).  The  op code is considered  to  be 7 bits  for  instructions that do not use 
multiple  accumulators o r  indirect  addressing. 

Following is a tabulation of the  instructions  into  five  columns: (a) those 
requiring an accumulator  tag, (b) those not requiring an accumulator  tag,  (c) 
register to register  instructions (op  code  extension bevond 6 bits),  (d)  shift  instruc- 
tions (op code  extension beyond 6 bits), and (e) instructions without indirecting or  
multiple  accumulators. 

213 





6.1.1.2.2 No Indirect  Bit, No Accumulator  Bit 

LDI, B, Tn 

DSMC, B, Tn 

CMPI 

DXS, B, Tn 

REP1 

LDSA 

Six op code bits  will  be  used  for  the tagged and non-tagged instructions above. 
This  means  that when counting the  number of instructions  used,  the  accumulator 
tagged instructions should be multiplied by 2. One instruction should  be added to 
designate  register  op  code  extension  instructions and one  to designate  shift  instruc- 
tions. One half of the no indirect  bit  instructions  should be added since they  can use 
the  indirect bit  to distinguish between two instructions.  The above is represented by 
the following calculations: 

Number of 
Instructions = 2x (Acc. tag  instr. ) + (no acc.  tag  instr. ) + 2 

+ 1/2 (no ind. bit instr. ) 

= 2 x 1 9 + 2 1 + 2 + 3  

= 64 

This  is, of course,  the  number of op codes  available  from six bits. 

6.1. 1. 3 Functional DescriDtion 

The  past  sections  have  discussed  the  basic  processor  features and its  operation 
in the  overall  multiprocessor  system.  This  section  will  give an explicit  explanation 
of the processor's  internal operation.  This  will  include a presentation of registers, 
timing, and aontrol. 

6.1.1.3. 1 Registers 

Figure 6-5 shows all  the  registers in the  processor and the  majority of the 
control flip-flops. (A few additional  flip  flops  may  be added instead of gating  to  aid 
in  the  explicit  implementation of the  instructions. ) There is also, of course, a large 
amount of gating  that is not shown. However the effects of this gating on the  operation 
of the  processor  will  be explained. Figure 6-6 gives a better understanding of the 
processor  operation by presenting  some of the  connections  in  the  processor.  The 
Control flip-flops fn these  figures  will be discussed in 6.1.1,3.4. 

215 



I p J  

INPUT/ 
OU TPU T 
GATING I ADDER 

LOGICAL 
AND 
TRANSFER 
UNIT 

(ALTU) 

INPUT/ 
OUTPUT 
GATING 

I 
OPERA - 
TIONAL 
REGIS - 
T ERS 

INSTRUCTION DECODING  AND CONTROL 
GENERATION (IDCG) 

REQUEST 

HARD WIRED 
INTERRUPT ADDRESS +CON - 

TROL 

)TIMING 

Figure 6-5. Processor Registers 
J 

216 



Figure 6-6. Processor Registers and Connections 

217 



L - Lower  Accumulator:  The  lower  accumulator is used  primarily in  multiply, 
divide, and floating  point  operations  to hold the  lower half of a data  word; 
however it  can  also be  used  for hot storage and data  manipulation in shift 
and register  operations.  This  accumulator, U1, and U2 have  a two bit 
extension  onto their eighteen bits in order to hold the overflow carries which 
may  be  generated in the two bit  at a time  multiply  operation.  This  extension 
is not shown on the bank-index registers; but either the  accumulator exten- 
sion will be time  shared  for  register  multiplies  or  the  extra  bits  will be 
added. 

U1, U2 - Upper  Accumulators:  The  upper  accumulators a r e  the  primary  arith- 
metic and logical  registers in single  precision  operations.  They  are  also 
used to hold the  upper half of data  in  floating point operations and to hold 
and manipulate  data  in  shift and register  operations. 

P - Program Counter: This  register is used  to  sequence  the flow of control  in  the 
processor.  It is not only used  to  access  instructions but also to  provide 
memory  addresses  for  interrupt  status word storage and for  the  operand 
cycles of instructions  operating  in  the  repeat mode.  It must  therefore  be 
connected both to the ALTU and to the memory  interface lines. 

MB - Memory  Buffer:  The  memory  buffer  receives  data and instructions  from 
the  memory,  sends  data and operand  addresses  to  the  memory, and holds 
the  divisor  in divide operations and the  multiplicand  in  multiply  operations. 
It  also  holds  one of the  operands in all  other  arithmetic and logical  opera- 
tions with the  memory, and holds  the  next  instruction  address  for an 
"execute"  command. In addition  to the above tasks  since  the M B  receives 
all  instructions  it  keeps many of these  bits  for  the  instruction decoding and 
operation. For example, i t  holds  the B bit  for  address  generation,  the 
register to  be  shifted  in a shift operation,  the  registers to be  operated on 
in register operations, and the op code  extension for  register and shift 
operations. 

Bl, B2 - B  Index - Bank Registers:  These  registers hold both index and bank 
values  for  address  generation and looping  control.  They  also  provide hot 
storage and take part in  register  operations and comparisons with memory 
contents. One of these two registers is added  to the  .address  decrement 
for  all  operand  address  generation, 

T1  to T7 - Tn Index - Bank Registers:  These  registers have  the same functions 
as  the B registers. The  only difference is that  operand  addresses can be 
generated without  adding any Tn register to  B + m. (Tag 000 specifies no 
indexing with the Tn  registers. ) 

ALTU - Adder,  Logical, and Transfer Unit: This  unit  contains  all  the  circuitry 
for  carrying out arithmetic and logical  operations  including  comparisons. 
It also  provides  for  transfers amongst  all  the  registers mentioned  above and 
detection of overflows. 

ER - Instruction  Register:  The  instruction  register  holds  the six bit op code 
throughout the instruction execution. 

218 



TR - Tag  Register:  The  tag  register holds  the indirect, and Tn bits of the 
instructions.  It is necessary so that  m + B  can  be  generated,  stored in MB, 
and then  added  to Tn  prior to  an  operand  cycle. 

SCR - Shift Count Register: This  register holds  the  shift  count for  shift com- 
mands, for  normalizing  floating point numbers, and for equalizing  operand 
exponents in floating  point  addition  and  subtraction. It is counted down to 
zero by one count for  each  shift.  The  register  can  be loaded from  the ALTU 
in  addition  to  the MB since  shift  counts  may  be indexed prior  to being  loaded 
into SCR for execution. 

6.1.1.3.2 Timing 

The  basic  functions'of  the RTC Ext, RTC, and F C  have  been described  earlier, 
however their  operation  as  depicted in Figure 6-6 will  be briefly  discussed along with 
the  operation of the  bit  time  counter (BTC) and mode counter (MC). A l l  the  counters 
in the  system  operate  from a 500 ns clock. At this  time  it is not clear if a good small 
substitute  for  a two megacycle  crystal will be developed by the 1975 technology time 
frame; however  even with a crystal  oscillator only  a small portion of a MOS/SOS chip 
will be necessary  for  the  oscillator  circuitry and one shot.  The crystal would then 
either  be mounted on the SOS chip o r  in a separate  small  pack  The clock  will  provide 
the  basic  time  unit  pulse  to  the RTC Ext and BTC. These  counters in turn count up 
and drive  the RTC and FC, and the MC respectively. It  should  be  noted from Fig- 
ure 6-6 that  the  operation of both the RTC and FC can  be  inhibited by control  signals 
from  the  interrupt  mask  register  in  the  control unit. The  bit  time  counter  provides 
the  control  unit with four  lines,  each  signifying  a  separate  bit  time in  the instruction 
o r  memory  cycle.  The  mode  counter  provides  timing for  the execution of the  longer 
instructions. A three  bit mode counter is sufficient for  the  longest  single  precision 
instruction  (divide), but as  many as  five  bits may  be necessary in order to  provide 
timing for floating  point  divide and multiply. This will depend on how much hardware 
is added to  speed up the  floating point operations.  The end of this  section  discusses 
floating point in greater depth. A four  bit mode counter is shown in Figure 6-5. The 
bit  time and mode counters  are reset to zero by the  control  unit  at  the  start of an 
instruction or  operation  cycle.  This  occurs when the  processor is accepted by a 
memory. After this  the  counters count up and there  values a re  used by the  control 
unit  until  the  instruction  execution is complete. 

6.1.1.3.3 Memory  Interface 

The  lines on the  memory-processor  interface are given below. 

Component Processor 

Interface  Memory 

Output (to  memory) 

request *One separate  line to each  memory - It requests 
memory cycles. 

address/data *18 bit two-way bus  common  to all  memory 
modules - It  sends  addresses  to  the  memory and 
sends and receives data. 

219 



read/write 

lockout 

lockout direct 

power off 

- Input (From Memory) 

busy 

lockout 

*Bit 18 of the a d d r e d d a t a  bus - This  line is 
available  for  read/write  designation  since  the 
memory  address  sent  over  the  lines is only 
14 bits  (each  module  contains 12K words). 

*One separate  line  to  each  memory - This  line is 
sent by a LLO command to notify the  memory  to 
look at  bits 7 to 9 in its data  register  for lock- 
out  information. 

*One separate  line to  each  memory - This  line is 
sent on the  occurrence of a real  time clock 
interrupt  to notify the  memory  to lock out all 
other  processors. 

*One common line  to  all  memories - This  line 
used  to turn off all lockouts by this  processor 
after  it  has  failed  or has been  turned off by the 
astronauts. 

*Bit 17 of the  address on the  address/data bus - 
This  line  notifies a requested  memory  that  the 
data  word  for  the  present  processor  memory 
cycle should be  sent to  an 1/0 unit. 

*One separate  line to each  processor  from  each 
memory - It is used  to notify  a processor of 
acceptance of a request. 

*One separate  line  to  each  processor  from  each 
memory - It notifies a processor if this 
processor is locked out of any memories. 

data  *The  same common 18 bit bus listed  under output. 

1/0 busy o r  locked  out *One seperate  line to each  processor - It  notifies  the 
processor  that  the  called 1/0 unit is busy or  locked. 

The  timing of a memory  cycle is given below and shown in Figure 6-7. 

1. The  processor  sends a request  to a memory (0 to 1 transition  occurs on the 
request 1ine)and at  the  same  time  it  places  the  memory  address and read/ 
write  request on the  address/data  lines. 

2. The  memory module contains a simple  round robbon type of scanner  for 
sequentially  selecting and granting  processor and I/O requests  for  memory 
cycles.  After  the  memory  scanner  picks up the  address  from  the bus 
and sends  the  processor a not  busy  signal (0 to 1 transition  occurs on the 
busy  line).  The  memory  uses the next 500 ns to address  the  specified 
memory  position  and  to  load its data register if a read is required. 

3. The processor  uses the- 1 transition of the  busy  signal to start its bit 
time  counter  and  prepare  to  read  or  write.  For a read  cycle  the  pro- 
cessor  memory buffer is loaded  during bit  time two by the 1 to 0 transition 
of the  memory  busy  signal.  The only requirement is that  this  load  must  be 
complete lBs after  the  memory  accepts the processor  request - 

220 



REQUEST LJNE 
TO MEMORY 

0 - 150 ns 
MEMORY ADDRESS n 
ON ADDREWDATA BUS I I 

0 -200 ns 

RD/WRlTE REQ 

MEMORY 
BUSY 
LINE 

n 
0 -200 n,. 

- - - -NOT BUSY 
(0 T O  1 TRANSITION  SIGNIFIES MEMORY HAS  GRANTED 
PROCESSOR A  CYCLE AND ACCEPTED MEM ADDR.) - 50 ns - 900 ns 

- 50 ns IF PROCESSOR IMMEDIATELY GETS  THE MEM 
CYCLE, UP T O  141 s IF  THE PROCESSOR MUST  WAIT 
FOR ALL OTHER MODULES T O  GET  A  CYCLE 

MEMORY 
ADDRESSES 
SPECIFIED 
POSITION - 50 ns - -500 ns - 
MEM DATA 
REG IS LOADED 
IF THIS IS A 
READ CYCLE - 50 ns - - 500 ns 

LOAD MEM BUFFER 
WITH  DATA ON MEM .~~ ~ ~ 

BUS FOR A READ CYCLE -900 ns 1050 ns 

LOAD MEM BUFFER 
WITH DATA T O  OUT- 

A WRITE CYCLE 
PUT T O  MEM BUS FOR 

-150 ms 650 ms 

Figure 6-7.  Memory  Cycle Timing 

221 



For a write  cycle,  the  processor  loads ita memory  buffer register and  bus 
to  the  memory with the  data. It then turns off its request  signal upon the 
0 to 1 transition of the memory busy  line (this will occur approximately IIIO ns 
after the  memory  busy  signal.  The 1 to 0 transition of the request signal 
causes  the  memory  to  load its data register with the information on the common 
bus.  The write  may  therefore be accomplished  in  approximately 650 ns. 

6.1.1.3.4 Control 

The  control  section of the processor  receives a number of lines  from  the 
memory and from  various  parts of the  processor which i t  then uses to set  control flip- 
flops or  to  generate  sequences of control  signals  that  get  sent throughout the  processor 
and back  to  the  memory.  This  operation is depicted in Figure 6-6 and will be func- 
tionally  described  here. 

The flip-flops greater than (G), less than (L), and equal (E) represent conditions 
generated  from a comparison  carried  out  in  the ALTU. After the  comparison,  these 
flip-flops are   set   or   reset  by the ALTU as appropriate.  The  control  unit then uses 
these  flip-flops  to  control  future  processor  actions  during a JMC (jump on conditions) 
instruction.  The overflow (0) flip  flop is set o r  reset by the ALTU after arithmetic 
overflows. It can then be  used to cause a jump  during  execution of a JMC. It is also 
used in  floating point operations  to  signify  the  need  for  the  hardware to normalize. 
The 1/0 busy o r  locked  out (I/O BL)  flip  flop is set or   reset  by a signal  from  the 
memory  (the 1/0 sends  the  signal  to  the  memory first) during a CIO (Call I/O) instruc- 
tion. It  notifies  the  processor  that  the 1/0 unit  requested is busy o r  locked  out from 
the  requesting  memory;  as a result a CIO command  should  generally  be followed by 
a J M C  instruction  to  check  the 1/0 BL flip-flop. I€ an 1/0 unit is not available, the 
processor  control  can then  jump to  the  executive so that a new program  can be 
scheduled. 

After an interrupt  occurs,  the  control  unit  generates a store  status  sequence  to 
store  five  words in  memory. A s  soon as  the  present  instruction is completed, the 
appropriate  flip flop, RTCI (real  time clock  interrupt),  FCI  (fill  clock  interrupt), or  
N R I  (no response  interrupt) is set.  These flip  flops are set respectively by the RTC 
zero  interrupt,  the FC zero  interrupt,  or  the  request  timer "one shot" and gating. 
(This  latter  hardware  checks  to  see if the  processor is requesting a memory  cycle 
from a memory  it is locked out of, o r  if the  processor has not been  granted a request 
for  greater than 14 ps)  The  control  unit then executes  the  interrupt  sequence  given 
in paragraph 6.1.1.1. A s  also  mentioned  in  this  section  the IMR (interrupt  mask 
register) can  be  used  to  inhibit  the RTC and FC so that  these  interrupts  will not 
occur.  This  section  also  mentions  that  the load status flip-flop (LS) is set by the 
LE6 command in order to  reinitialize  an  interrupted  program. 

The  Bite  timing  circuitry and  output switch flip-flop (OS) are used  to  check 
failures of the  processor and to  switch  control of critical outputs  to  another  pro- 
cessor.  These functions were  discussed in paragraph 4.2.2.2. 

The  failure  flip  flop  (F) is set by the  checking  hardware o r  by a software  self 
check  routine  using  the LPR command. This  flip  flop sends the processor  status 
to the 1/0 units and also  causes  the  processor  to turn off. The 1/0 units have a 
failure  status word for the status of all modules. This ie discussed  again in 
paragraph 6.1.3. 

The  section of the  control  unit  labled in6trUCtiOn decoding and control  generation 
(IDCG) has  the task of sending  out  sequences of control  signals.  Theee  sequences are 
generated by decoding and combining all input control flip-flop lines, memory  signals, 

222 



timing  information, and MB, IR, TR, and SCR register contents.  The  purpose of most 
of the  control  lines  into and out of the IDCG section  can  be  understood  from  the earlier 
register and memory  interface  explanations.  For  example,  the  memory  buffer  register 
sends  bit  positions  seven  to  eighteen  to  the  control  section  in  order  to  provide  the  B  bit, 
R1 and R2 for register operations,  R1  for  shift  operations and op code  extension for 
both register and shift  operations.  The  control  section then uses  these  lines along 
with others,  such as  the op  code  from IR, to  generate  control  sequences  to  implement 
a given instruction. Some of the  lines  providing  control signals to  the  processor 
registers  are shown in Figure 6-6 coming out of the  right  side of the IDCG. For 
example,  these  lines go to  the ALTU to  initiate  transfer o r  arithmetic  operations, 
etc. , to  the P, B, and T registers to  increment or  decrement by one, or to  the 
accumulators  to  cause  shifts. 

The  repeat mode operation was explained  in  paragraph  4.2.1.2., however the 
repeat mode instruction  cycle  timing will  be shown here in order to  offer  a  deeper 
understanding of the  operation of the mode. It is initiated by the  REP command 
setting  the RM flip  flop  and  loading T7 with the number of operands  to be processed. The pro- 
gram  counter of the  instruction  to  be  processed in  the  repeat mode is saved in Tg, 
and this counter is then  used  to address  the  memory  for  all  repeat mode operand 
cycles.  The  cycles of course continue  until T7 has been  counted down to  zero. The 
above operation is demonstrated by the following timing  diagram of the  REP  instruc- 
tion and  the "add" instruction in the  repeat mode. 

Instruction  Cycle 
" 

Bit  Times: 1 2 

REP (4 p s )  

" 

P to  Memory Memory  to MB 
(address  inst) (receive  inst) 

Operation  Cycle 

Bit  Times: 1 2 

REP  (4 p s )  

MB to  Memory  Memory  to MB 
(address  operand)  (receive  operand) 

Instruction  Cycle 

Bit  Times: 1 2 

ADD (2+2n p s )  

P to  Memory Memory  to MB 
(address  inst) (receive inst) 

3 4 

m+B-MB P + 1-p 
1 -  RM 

3 4 

MB -T7 

3 4 

m+B -MB MB+Tn-MB 
P-T6 MB-P 

223 



Omration  Cvcle 

Bit  Times: 1 
” 

2 3 4 

ADD (2+2n ps) - 
P to  Memory  Memory  to MB U+MB - U T7 # 0 
(address  operand) (receive operand)  T7 - 1 - T7 then continue 

&n 0-RM 
P+1- P T7 = 0 

T6 -P 

Floating point operations a re  only briefly  discussed in this  report  since  the con- 
clusion  to  definitely  include  a  floating point mode  cannot be made without a much 
deeper  investigation of the  applicable  requirements;  however,  they  have been briefly 
investigated in order to  offer an  understandinE of their  possible operationand-implementa- 
tion  in this  multiprocessor  system.  This  mode can be  implemented with the same  set 
of processor  registers as defined earlier.  The only necessary additions are  a good 
amount of control  hardware and the  ability  to  mask  operations on the  mantissa (30 
bits)  from affecting the exponent, and conversely.  This  can  be  fairly  simply  accom- 
plished by hardware  additions  in  the ATLU and at  the registers.  For example,  during 
part of an  operation only the  mantissas could be allowed to go to  the ATLU (zero’s 
can be  automatically  substituted  for  the exponent bits). A t  the  conclusion of such an 
operation of course  the exponent bits  (zeros) would not be loaded  back  into a register. 
In fact  the addition of a  masked  mode of operation would make some of the  additional 
hardware  useful  for both the  masked and floating  point  modes.  The  sequence of 
primary  hardware  operations  for a floating  point add is given below. 

1. Subtract exponents 

2. Store  the  difference in SCR (shift  counter) 

3. Normalize  the  smallest  operand  with  the count. 

4. Save the exponent 

5. 30 bit  precision add of the  mantissas 

6. Normalize  the  result if overflow occurs 

7. Store  answer with exponent 

This  operation would take  approximately 25 ps with the  present  processor 
hardware; however, if the requirements show it to be worthwhile, this  operation could 
be  substantially  speeded up. For example  the  memory  buffer could  be  made  double 
length in  order to hold both parts of the  mantissa  for  the add, the  adder could  be  made 
double  length, and group  shifting  could  be  added  to  speed  the  normalization.  These 
same innovations would also  substantially  increase  the  speed of floating point subtract, 
and  multiply  while  making the  hardware  implementation of floating point divide 
practical. It would probably also  prove worthwhile to  make a number of single  preci- 
sion  operations  available in  double precision. This could  be  accomplished by 

224 



eliminating in floating  point  mode  some of the  single  precision  operations.  These free 
op codes  could  then  be  used while in  floating  point  mode  for  useful  single  precision 
operations,  such a s  single  precision  load,etc. 

In a final  design of the  processor  additional  provisions  will  have to be  made  for 
ground  check out. This  may  even  require  the  addition of a debug  mode  with halt 
instructions etc. Explicit  specification of these  features would be  tied  to development 
of the ground check  out equipment. 

6. 1.1.4 Rough Chip Distribution 
~. 

Section 111, 3. 1 discussed  the  circuit  densities,  connections, and yields  for 
MOS/SOS technology in  the 1973-1975 time  frame.  The  conclusions of this  section 
were  that  device  densities with reasonable  yields  including  crossovers should be on 
the  order of  5, 500 FET's  per roughly 150 mils  square.  This  was  felt  to  be  relatively 
conservative  since  processing  break  throughs could easily  enable  chips of approxi- 
mately  the same densities and four times  the  area to  be  produced with good yields. 
The  processor  described  in  this  section  requires  approximately 330 flip-flops for its 
implementation. An approximation  for  the  gates and the  drivers  (for  interface  lines) 
in  the  system would give  a rough total  (including  the  flip  flops)  FET o r  device count 
of 11, 000. If the  processing  break  throughs  develop,  this  processor could easily  be 
placed on a 250 mil  square chip. One feature of the  processor  that  might  help  to 
enhance its  implementation on a  single  chip is the  similarity  amongst  the  accumulators 
and the bank-index registers. It may  be  possible  to  build  one or  at  most two register 
types and place  spares on the  single  chip.  Discretionary  wiring  techniques could then 
be  used  to connect the  correctly  operating  registers and thus  improve  the  chip  yields. 
If the above break  throughs do not materialize  the  processor could be placed on two 
smaller  chips.  The  distribution  amongst  chips would be as  follows: 

Chip One 

L, U1, U2, P MB,  B1, B2, TI -T  ALTU,  RTC Ext, RTC, FC, BTC, MC, 
> 7' 

500 11s clock. 

This would amount  to approximately one-half of the  devices - 5, 500 FET's 

Connections to  chip - approx. 140 

Chip Two 

IR, TR,  SCR,  All control  flip-flops,  all  control  gates. 

This would also  take  approximately one-half the  devices - 5, 500 FETIs 

Connections to  chip - Approximately 130 

The above distribution of hardware  requires 150 lead  packages  for  the  chips. 
This is much more  sophisticated than todays 40 lead  packs; but as pointed out  in  3.1, 
these  packages should be  available.  The above organization  offers an additional 
advantage of being  able  to  use  a  microprogrammed  control  unit s o  that  simply changing 
"chip two" changes  the  instruction set and operation of the  processor. Chip  one  could 
then  be  standardized  for  a  number of diverse  missions  that  may  require  different 
instruction sets. Another  approach  to  the  distribution of processor  hardware would 

225 



be to  simplify "chip two" by  placing some of the  control  generation  hardware in 
"chip one". This would of course  increase  the  FET  density  in "chip one", but it 
would also  provide a sizable  reduction in inter-chip connections.  The final  decision 
on hardware  distribution  must  wait  for  the  final  design stages when the technology 
base is precisely known. 

6.1.2 Memory 

Both magnetic  and  semiconductor memories have  been  studied  for  the  multi- 
processor  main  memory.  The  magnetic  studies first looked at  todays DRO core 
memories and NDRO plated wire  memories as examples of the state of the art. A 
batch fabricated NDRO multiword  memory  was then chosen as the  preferred  magnetic 
memory  approach  for  the 1973-1975 time  frame.  The  semiconductor  memory  studies 
investigated an NDRO  MOS/SOS coincident select memory  organization. Both this 
system and the  magnetic  system are shown to  meet  all  the  system  requirements  while 
offering  relatively  little  risk  in being able to meet the reliability  goals of the Manned 
Mars Mission  in 1980. The MOS/SOS memory is shown to  dissipate  less power  than 
the  magnetic  memory, but it will  probably also  offer  slightly  greater  development 
risks. As can  be  seen  from  the above, neither  system  has  the decided  advantage; as 
a result a choice  between the two cannot now be made. Both systems should  be 
developed and investigated in  much greater  detail  in  order  to  be  able to choose  the 
most  desirable approach. 

6.1.2.1 LSI Semiconductor  Memory 

6.1.2. 1. 1 Introduction 

This  section  describes a solid  state  memory  candidate  for  the  main  multi- 
processor memory. It should  be remembered  that  there are one  to  four  memory 
modules (3 for the  mission  considered) with the following characteristics: 

No. of words 12, 000 (Variable  Storage) 

Bits  per word 18 

Read/write  cycle  time 2 PS 

MTBF 62,  500 hours 

Failure rate goal 1.6% per 1000 hrs. 

The above  MTBF and failure rate goals  where  obtained  from  the Monte Carlo 
simulations,  described in Section V. 

The  design of the  solid state memory is based on. projected  production technol- 
ogies in the 1973-1975 time  period. As for  the  processor modules, MOS/SOS 
technology has been  chosen as representative. 

When the  reliability and performance  requirements of the  multiprocessor 
memory are translated  to  hardware  requirements  for  the  semiconductor  main 
memory,  three  very  important  features  become  apparent. 

1. Large  Scale  Integration via Batch  Fabrication is essential  for  attaining 
reliability and performance  objectives. 

226 



2. One or   more standby  power sources  are needed for volatility  circumvention 
for a read/write  semiconductor  memory. 

3. The use of memory  circuits which have  extremely low standby  power 
dissipation is very  desirable  in  order  to achieve: (a) LSI with low operating 
temperatures and, consequently,  enhanced  reliability; and (b)  volatility 
circumvention by means of one or  more  small standby  power  sources. 

These  three  reasons make  the  use of complementary MOS field  effect transistors 
manditory for achieving  a  read/write  memory  cell with extremely low standby  power. 
A comparison of the  approximate  standby power for a bipolar  transistor  memory  cell 
and a MOS field  effect  transistor  memory  cell  illustrates  the  problem. 

Item - 
Standby current* 
per  cell 

Number of cells 
per  array 

Standby current* 
per  array 

Number of Array 
per module 

Standby current* 
per module 

Standby current* 
for  3  modules 

*nominal  value  at 25°C 

Complementary Complementary 
MOS Bipolar 

Memory  Cell Memory  Cell 

2 nA 0.2 mA 

4, 096 4, 096 

8PA 800 mA 

54  54 

0.432 mA 43.2A 

1.29mA 129A 

Both of the  memory  cells in the above example a re  inherently  volatile. How- 
ever, due to  the  extremely low standby current of the  complementary MOS memory 
cell, and the  availability of high reliability  rechargeable  secondary  batteries, i. e., 
heremetically  sealed  Nickel Cadmium batteries designed for  space applications, it is 
practical to use  one or more standby  power  supplies for volatility  circumvention. 
In the  case of the  complementary  bipolar  memory cell, the standby  power  supply 
current is so large  that  volatility  circumvention is very  difficult  to achieve.  Very 
large and heavy  standby batteries would be  required  for  volatility  circumvention  for  a 
few hours.  This  latter  problem  may  be  solved by a number of separate well  isolated 
power lines  from  the  redundant  primary  spacecraft power supplies; however, a  rela- 
tively large amount of power would be  drawn from  these  batteries by the  bipolar  cells. 

One other  principal  factor  must  be  considered in choosing between MOS field 
effect  transistors and bipolar  transistors  as a memory  circuit element. This is 
demonstrated  reliability. A choice  for 1967 is easy - bipolar  transistor. However, 
a choice  for 1973-1975 must  be made. This  allows 6 to 8 years  for  the MOS produc- 
tion  technology to  become  mature and for  reliability  data  to become  available.  The 

227 



' basic  problem with MOS field effect transistors  has  been  silicon  surface  instabilities. 
I Many improvements  were  made  from 1964 to 1967. Stable  P-channel MOS transistors 

are being made  in 1967 by several  manufacturers. Obtaining stable N-channel 
enhancement  mode MOS transistors  has been more difficult.  However, at  the 1966 
International  Electron Device  Meeting, Signetics and Westinghouse  reported  success- 
ful fabrication of monolithic  complementary MOS transistors. In a paper  entitled 
"Monolithic MOS Complementary Pairs" by K. K. Yagura, G .  M. Catlin and J. D. 
Hutchensen of Signetics  Corporation,  it  was  said  that t ' I n  recent  years,  stable, 
discrete N-MOST'S and P-MOST'S have  been  produced and marketed, but is has 
generally been found that  the  fabrication of the two devices on the  same  substrate led 
to  incompatible  processing  steps.  The  major  problems  in  process  compatibility  have 
now been solved and stable  complementary MOS pairs   are  being  produced  which.show 
excellent  potential for  use in high speed, low power  integrated  circuits. ' I  Signetics 
reported a lift  test of 800 hours  at 125°C resulted  in  less  than 50 mv  drift  in  either 
P-MOST o r  N-MOST (threshold  voltage). 

Westinghouse  presented  a  paper  entitled  "Integrated  Complementary MOS 
Circuits" by J. C. Tsai, H. W. Van Beek, C.  C. Roe and F. Schliesing  where they 
reported "Life test  data shows  that both type MOS transistors  were  stable  after 
temperature  bias  tests  at 150°C for  a few thousand hours. I '  

Autonetics  has  successfully  fabricated both N-channel and P-channel MOS 
transistors  utilizing Silicon-on-Sapphire. This technology appears to  offer the 
possibility  for  at  least  as good if not greater  reliability than  bulk MOS technology. 
Various  circuits  functions  fabricated  at  Autonetics out of bulk MOS technology  have 
logged a  substantial  number of hours.  These  hours  have  been  on bulk MOS wafers in 
demonstration  equipment and  on life  test. Only a  very few failures have occured, as  
a  result this limited  information has shown a failure  rate between 2% and 4% per 1000 
hours.  These  rates should go down substantially as more  data is accumulated since 
the  portion of equipment  made from  newer  devices  have  shown.no  failures  to  date. 
These  rates should also  be  substantially  reduced as life  test  results  are  fed back to 
the processing  labs in an attempt to improve  reliability. 

The  work  done by the  above three  companies  shows  the  interest  in  complemen- 
tary MOS circuits.  This  interest will  provide  the  incentive for developing a  mature 
production process  for LSI complementary MOS circuits in the next few years.  The 
fact  that  stable  P-channel and N-channel MOS transistors  are being  made in the 
laboratory today shows  that  the  reliability  problems which have  beset MOS field  effect 
transistors in the  past a r e  being  solved. Six to eight years should be  more than 
sufficient for  maturing  the  batch  fabrication  techniques  to  make LSI complementary 
MOS arrays. 

6.1.2.1.2 Organizational  Considerations 

The  organization of the  memory  has  been  chosen  to  enchance  the  reliability of 
the  system.  This is done by minimizing  the  number of external  connections in the 
memory  system and the  number of leads on each array of cells by using  coincident 
selection  rather than a  linear  selection technique. For an example,  the  number of 
leads on an array  utilizing  coincident  selection  will  be  compared  to  those on an array 
utilizing  linear  selection.  For  convenience,  assume  the array contains  a  matrix of 
60  by 72 memory cells with the  appropriate decoding  and  output circuits included  in 

228 



the  array(1).  Assume  that  the  array is to be  used in a 4,320 word 18  bit  memory. 
(This example is of course for a memory  slightly  more than a  third of the  size needed 
for the  multiprocessor  main  memory. ) 

Item - 
Coincident  Linear 

Select  Array  Select Array 

Input leads  for  addressing 13 6 

Input lead  for  control 2 2 

Power supply 2 2 

Input lead  for  data 1 18 

Output leads  for  data 

Total per  array 

1 

19 
- 

18 

46 
- 

For  this  example,  18  arrays  are  required in either  case to make a 4,320 word 
1 6  bit memory. Note that  the  coincident select  array is organized  as 4, 320 words of 
one  bit whereas  the  linear  select  array is organized as  240 words Gf 18  bits.  This 
is a decided  advantage for the  coincident select  system  because no additional  logic 
gating is needed at the array outputs. There  are only  18 output leads  from  the  18 
coincident  select  arrays and each  lead  provides one bit of the 4, 320 words. In the 
case of the linear  select  system,  there  are  18  arrays  each having 18 output leads, 
making a  total of 324 outputs  leads.  Since  a  selected word could come  from any one 
of the 18 arrays, an 18 input "or" logic gate is needed for each of the 18 bits in the 
word. Because  these  "or" logic gates have so many leads,  it may not be practical 
to  integrate them in one o r  two packages. Using 9  packages  each with  two 18 input 
gates and 40 external  leads would be reasonable  for  a rough comparison  here although 
improved  future  packaging  methods may make  many more than 40 leads  per  wafer 
practical. The resulting  comparison of the two systems i n  the  example is shown in 
the following table: 

Number of LSI memory 
arrays 

Coincident Linear 
Select  System  Select  System 

18  18 

Number of LSI logic arrays none 9 

Number of leads  per  memory  19 
array 

Number of leads  per logic 
array 
Total  number of leads 

" 

342 

46 

40 

1,188 
Total  number of arrays  18 27 

(1)  60 by 72 is convenient for  a  linear  select  organization  since it allows an even 
number of 18  bit  words to be  fit  into  an  array. 

229 



Many small  differences between the two systems have not  been  included,  but 
they  should not change  the results shown above very much, 

For  the  reasons  outlined above, a  coincident  selection  technique is recom- 
mended for  the 12K-18 bit multiprocessor  semiconductor  memory modules. 

6. 1. 2. 1. 3  Explicit  Memory  Organization 

Starting with the basic  memory  cell,  a  description  will  be given of a  cell, an 
array,  a module subassembly, and finally  a  memory module. Figure 6-8 shows  the 
schematic of a conventional complementary MOS bistable  circuit without any pro- 
visions  for  reading or  writing.  Referring  to  the  schematic of Figure 6-8 note  that 
Q1 and Q2 are  never both on simultaneously  except  for  a  very  short  transient  time 
during  a  change in logic  states.  Since one of these two MOS transistors is always off 
in a standby  mode,  the only current drawn from  the supply  voltage is the  leakage 
current of the "off" transistor. In one  logic  state, Q1 and Q4 a re  on, Q2 and Q3 a re  
off. In  the  other  logic  state, Q1 and Q4 are  off, Q2 and Q3 are on. There  are two 
leakage  current  paths in this  basic  memory  cell, one  through Q1 and Q4 and the  other 
through Q3 and Q4. Addition of read and write  circuitry will add at  least one more 
leakage current path,  making a minimum of three  per  memory  cell. 

The  magnitude of the  leakage  current in each of the  three  paths  depends upon the 
specific  processes and type of isolation  being  used,i. e. , silicon-on  sapphire, and the 
junction temperature.  Specifically,  the  leakage  current  depends  primarily on the 
area of the p-n junction, the  lifetime of the  minority carr iers  in the  vicinity of the p-n 
junctions, and the  junction  temperature.  For MOS transistors  fabricated on silicon- 
on-sapphire with a 1973-1975 mature  process,  the  estimated nominal  leakage current 
per  memory  cell is 0 .1  qA at 25°C. A value of 2 qA per  cell, at 25"C, is assumed  for 
all  calculations. This is 20 times  the  estimated  value  and  still  leaves  total  memory 
leakage current  very  small.  Because of the  fact  that  leakage  current is approximately 
doubled for  every 10°C rise in junction temperature,  it is recommended  that  the 
ambient temperature of the multiprocessor  be maintained  at 35°C o r  less.  This is 
practical  since  the power dissipation of a memory  module is estimated  as only  0.47 
watts  during continuous operation and 5  milliwatts  during  standby  at 25°C. Keeping 
the  ambient temperature low should also enhance  the  reliability of the  system. 

A block diagram of a  possible  memory  cell  design is shown in  Figure 6-9 along 
with a  truth table. +V 

f 
. "  ~ 

0 7. 

4r 

Figure 6-8. Basic Memory Cell Utilizing  Complementary MOS Transistors Without 
Selection o r  Readout Provisions 

230 



P +v 
1 

Bi j 

BIT OUTPUT 
Sjl 0 

ONE-SET INPUT COINCIDENT SELECT 

NDRO 

Sj O 
RS MEMORY CELL Rj 

0 
ZERO-SET INPUT OREAD COMMAND 

0 Gnd 0 Wi  WRITE  COMMAND 

FUNCTION OF 
ij  CELL 

NOT SELECTED 
NOT SELECTED 
NOT SELECTED 
NOT SELECTED 
NO  CHANGE 
WRITE r'O'l 
WRITE "1" 
NOT ALLOWED 

NOT SELECTED 
NOT SELECTED 
NOT SELECTED 
NOT SELECTED 
READ 
NOT ALLOWED 
NOT ALLOWED 
NOT ALLOWED 

Rj - 
0 

0 
0 

0 
0 
0 
0 
0 
1 

1 
1 
1 
1 
1 
1 
1 

Wi 

0 
0 
0 

0 

1 

1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
1 

- SP - 
0 

0 
1 
1 
0 
0 
1 

1 
0 
0 
1 
1 

0 
0 
1 

1 

Sj" - 
0 
1 
0 

1 

0 
1 

0 
1 

0 
1 
0 
1 
0 
1 
0 
1 

Figure 6-9. Logical  Operation of a Coincident  Select  Memory  Cell 

231 

I 



The  organization of a  memory cell array is shown in Figure 6-10. The array  has 
18  external  leads  as shown. The  physical  size of the  array would be  approximate1  y 
1.2  inches by 1.2  inches by 0.05 inches.  The matrix of 64 by  64 memory  cells would 
probably  be  made by starting with  a matrix of 100 by 100 cells,  testing  the cells to 
determine  the good/bad cell location  pattern and  then  using  discretionary  wiring 
techniques  to  connect  a 64 x 64 matrix of good cells.  Discretionary  wiring  techniques 
will  probably  be necessary  since  reasonable  yields on this complex of a circuit may 
be  difficult  to obtain. A l l  cells, decoding gates,  logic  gates and output gates would 
be made  simultaneously with batch  fabrication  techniques.  The  array is organized 
as 4, 096 words of one  bit. A 100  x 100 cell  wafer  was  chosen  since  this is consistent 
with the estimates of MOS/SOS device  densities  for  the  processors (5 ,  500 FET's  per 
150 mils  square). 

Figure6-11  shows how 18  arrays  are connected  to  make  a  subassembly  containing 
4, 096 words of 18  bits.  Three of these  subassemblies  are needed to  make  a module 
of 12,000  words,  18  bits.  There  are 324 interconnections in each  subassembly and 
52 leads  either  to  or  from each  subassembly. 

The  organization of a  memory module is shown in Figure 6-12. (Note that if 
expandability to three  processors and three 1/0 units is desired, two more Input- 
Output units  must  simply be added. ) Four sets of eighteen  time-shared  data  lines 
are used  from  the module  to the No. 1 processor,  the No. 1 I/O, the No. 2  proces- 
sor, and the No. 2 I/O. Only one processor  or 1/0 unit  can have access  to  the 
memory module at any one  time. There will  be  4  control  lines  from  the  memory 
module to  each  processor and 1/0 unit for  data  transfer  control. In order  for a  unit 
to write an 18  bit word  into the  memory module,  the  following sequence of events 
must  occur.  The  processor or I/O, assume No. 1 processor,  must  request  a 
memory  cycle  from  one of the  modules. When the  module is available, No. 1 proces- 
sor takes  control and the  other  units a r e  prevented  from having access  to  the module. 
(There is a  simple  round-robin  scanner in each  memory  module  that  takes  turns 
choosing  one of the  processor  or 1/0 units. ) A s  noted earlier in chapter 6, this 
means  that  periodically  a  processor o r  1/0 may  have  to  wait as long as  14 ks before 
getting access to a  memory module. The  frequency of waits  can, of course,  be 
minimized by  good program  placement.  After  gaining  control of the module,  a 
14 bit  address word and a  write command are transferred  from the No. 1 processor 
to  the  address  register in the  memory module. This  operation is enabled by one 
of the two lines  from  the  data  transfer  control  to  the input/output  module. These 
lines  enable  transmitting  or  receiving  to and from  each  processor  or 1/0 unit. The 
appropriate 4, 096 word  subassembly is enabled  to receive an address by means of 
two lines going from  the Input Data  Control  and  Address Register to  each of the  three 
sublines going from  the Input Data  Control  and  Address Register to each of the  three 
subassemblies shown in Figure 6-12. (00-disable  sub-assembly; 01-enable read; 
10-enable  write).  Twelve of the 30 lines going  to the  three  subassemblies  transmit 
the  address of the  selected  word within the  subassembly.  The above address setuD 
operations  occur  in less than 500 ns. The #Iprocessor  cannow  transfer  the 18 bit 
word  to  be stored  in  the  selected location. A s  presently shown, the No. 1 pro- 
cessor  transmits  the word  through  the input-output gates,  through  the input data 
control  gates, and to  the  selected  location in the  subassembly. Eighteen of the 
30 iines going to  the  three  subassemblies  transmit  the  data.  The No. 1 processor 
is required  to  transmit  the  data  during  the full write time which also  takes one  bit 
time of 500 ns. The write  cycle.  time is then less than 1 p,s (approximately 650 ns). This 
means the second half of the 2 p  memory  cycle is spent  in  standby.  The  processor 
is then able  to  use  the two bit  times left in the  memory  cycle  to  prepare  for  the next  cycle. 

232 



DATA 
INPUT 

READ 

WRITE 

1 LTNE 1 
1 LINE 1 - 

b LOGIC FOR 
1 GENERATTNG SELECT 

b 
Sj', Sj", Rj ADDRESS 

ENABLE 1 LINE 
~ ! 4 
I I  n = 64 

ROW 
SELECT 
DECODER 
AND 
ADDRESS 
ENABLE 

64 LINES 

64 x 64 
CELL 
ARRAY 

BIT 
OUTPUT 
GATING 
AND 
OUTPUT 
DRIVER 

*THESE  ARE NECESSARY (INSTEAD OF ONE LINE) DUE TO 
CAPACITANCE LOADING 

Figure 6-10. Organization of a Coincident Select Memory  Cell  Array 

COLUMN. 
ADDRESS 

6 LINES 

DATA 
OUT 

1 LJNE 
- 



PARALLEL WORD INPUT 

BIT 1 BIT 18 BIT 2 

v . v v 
ROW 
SELECT n = 6 LINES* 

“”””_. 

COLUMN 
SELECT n - 6 LINES* 

”““””- 

ARRAY #1 ARRAY #2 ARRAY #18 

READ ””””“ 

WRITE e ””””“ 

BIT 18 

t 
PARALLEL WORD OUTPUT 

Figure  6-11. Connection of 18 Arrays  to  Form a 4, 096 Word, 18 Bit, 
Subassembly for a Memory Module 



TIME SHARED 
DATA/ ADDRESS 
LINES # 1 I/o 

INPUT- 

18 LINES 

I I 
TIME SHARED 
DATA/ ADDRESS 
LINES #1 OUTPUT 

LINES 

PROCESSOR 

CONTROL LINES 
d l  I/O 
CONTROL 
LINES # 1 
PROCESSOR 

CONTROL 
LINES #2 
PROCESSOR 

CONTROL LINES 
#2 I/O 

I 

DATA 4 LINES 
TRANSFER 
CONTROL 2'' 

' 

11" 

I 4 2 LINES 

TIME 
SHARED 
DATA/ 
ADDRESS  LINES #2 

INPUT- 
OUTPUT 

PROCESSOR 7 I 

L 

TIME 

SHARED 4-f , 
DATA/ADDRESS 
LINES #2 1/0 

1 8  LINES 

INPUT- 
OUTPUT 

INPUT 
DATA 
CONTROL 
AND 
ADDRESS 
REGISTER 

2 

30 - ASSEMBLY 

1 8  LINES 
SUB- Jr 

2 LINES b 
WORD 
4,096 

SUB- 
b ASSEMBLY 

30 LINES 

4,096 
18 LINES 

2 LINES 
ASSEMBLY 

WORD 
OUTPUT 
GATING 

18 LINES 

Figure 6-12. Organization of a 12 ,000  Word, 18 Bit, Memory Module 



To  read a word  in the  memory module, the  #1  processor  must again  gain con- 
trol of the module. A s  for writing, a 14 bit  address  word and a read command a re  
transferred to  the  address register. Since  the  selected  word  could be in any of the 
three  subassemblies, a 3-input "or" gate is required  for  each of 18  bits in a word. 
These  gates  are shown in Figure 6-12as Word Output Gating. The  selected  word is 
transferred to the Input-Output block, as shown in Figure6-12, and is setup on the 
data  lines  to  processor No. 1. A t  the end of bit  time two the  processor  strobes  the 
word  into its memory  buffer  register.  Therefore  the  read  operation  occurs  in 
one ps .  

The  estimated  number of arrays  in a memory  module is given in the following 
table. 

Number of Arrays  Number of 
Function Per Module External  Connections 

hput-Output 2 (l)(l) 
to  #1  processor 

Input-Output 
to #2 processor 

Input-Output 
to #1 I/O 

Input-Output 
to #2 I/O 

Data Transfer 
Control 

60 

Input  Data Control and 2 
Address  Register 

1 30 

60 

Subassembly  #1 18 52 + 324(2) 

Subassembly #2 18 52 + 324 

Subassembly  #3 18 52 + 324 

Word Output Gating 2 

Total 
- 
67 

76 

562 + 962 

(1) The  number in parenthesis  may  be  more  representative of future packaging 
methods. In fact  the 1/0 units and data  transfer  control  may well  be com- 
bined into one array.  This would put no strain on element  densities within 
the array. If a packaging  technique  with 100 to  150  connections  could  be 
developed  the total  number of arrays would drop to 56. 

(2) Number of connections  internal  to a subaseembly.  From  the above it can be 
seen that each  memory module has an eetimate of about  1500  connections 
external to the  array. 

238 



6.1.2.1.4  Volatilitv  Circumvention 

The  suggested  power  distribution,  voltage  regulation, and volatility  circum- 
vention for  each  memory module is shown in Figure6-13. L€ a short  occurs  inside a 
module, short circuit protection is needed  to  prevent this  short  from  causing a 
power failure  for  the  other modules. In the case of an input short  circuit,  the diode 
D and transistor Q prevent a reverse power flow through  the  voltage  regulator and  a 
consequent  power failure to  one or   more  modules. 

For a standby  power  source, it is recommended4-d a hermetically  sealed 
nickel-cadmium  rechargeable  battery  be used.  Assuming  a  nominal  standby current 
of 0. 5mA per module, the  standby  current  for  the  three  modules is 1. 5mA at 25°C 
and 3mA at 35°C. A battery having an ampere-hour  capacity of 0.45 A. H. could 
supply  standby  operation for 300 hours at 25°C o r  150 hours at 35°C. A hermetically 
sealed high reliability  nickel-cadmium  battery  electrically  similar  to a Sonotone 
S-101 or an Eveready BH450 would provide  the following characteristics: 

Initial  cell  voltage  1.45  volts 

Nominal cell  voltage 1. 25 volts 

Endpoint cell voltage 1.10 volts 

Nominal ampere-hour  capacity 0.45 A. H. 

Volume per cell 0.42 cu. in. 

Weight per  cell 0.80 ounces 

A battery of eight cells in series would have  the following characteristics. 

Initial  voltage, 8 cells  11.6  volts 

Nominal  voltage, 8 cells 10.0 volts 

Endpoint voltage, 8 cells 8. 8 volts 

Nominal  ampere-hour  capacity 0.45 A. H. 

Dimensions  1.2" x 2.4" x 2.4" 

Volume 7 cu. in. 
Weight 8 ounces 

Concerning  the life expectancy,  the  "Eveready"  Battery Applications and 
Engineering Data manual states  that "Cycle life of the nickel-cadmium sealed  cell 
depends upon the way it is used. The  factors  affecting  life  expectancy  are: 

Amount of overcharge 
Depth of discharge 
Temperature of charge 

237 



PRIMARY 
POWER 

1 TO OTHER 
MODULES 

STANDBY 

-”- 
TO OTHER 
MODULES 

t 
ALTERNATE STANDBY 
POWER, IF NEEDED 

REGULATOR 

Ql OUTPUT 
, SHORT 

MODULI CIRCUIT ++V FOR 
- PROTECTION 

1 

VOLTAGE 
REGULATOR 

REGULATOR 

MEMORY  MODULE 

NOTE: 

Dl AND Q SERVE AS REDUNDANT INPUT SHORT CIRCUIT PRODUCTION. 
Q1 IS A SdRIES REGULATING  TRANSISTOR IN THE VOLTAGE  REGULATOR. 

Figure 6-13. Memory Module Volatility  Circumvention 

238 



Temperature of overcharge 

Temperature of use 

A cell which is discharged  through  only a fraction of its full capacity on each 
cycle will give many more  cycles than a cell which is fully  discharged  each  time. 
Under  conditions of very light or  casual service, the  expected life is several  years. 
Concerning trickle charging,  the  Eveready  manual states, "A trickle  charge is a 
continuous  constant current  charge given to a battery to  maintain it in a fully 
charged condition, with no external  load  connected  to  it.  This may  be used  for 
batteries in storage, o r  in  standby service where  their  use is in an emergency  such 
as failure of the  normal power  supply. If This  says  that  the  trickle  charged  standby 
batteries  in this system should offer high reliability  since  they are used  under optimum 
conditions. 

Gulton Industries,  Inc., Metuchen, New Jersey,  has published reliability  data 
on some of their  hermetically  sealed high reliability  batteries  designed  for  space 
applications. For  their VO-12HS cell, they report 2, 017,360 cell-hours of operation 
with  no failures.  This  data is from  the  Orbiting Geophysical Observatory  Program 
and is accumulated  from life tests, cell evaluation tests,  battery development and 
acceptance  tests,  spacecraft  testing, and battery  storage. The data shows  a demon- 
strated  failure rate of less than  0.12% per thousand hours  at a 90% confidence  level. 
This is for a large 12 ampere-hour cell. Based on this  data, it is assumed  that 
8 cells having a 0.45 ampere-hour  capacity  each will have, in 1973-1975, a failure 
rate less than 0.2% per thousand  hours at  a 90% confidence level. 

It  should  again  be  noted here  that  these  extra  batteries may not even  be 
necessary if a reliable  redundant  power  supply is employed for  the  spacecraft.  The 
same  circuitry  as shown in Figure6-13would  be  used with totally  isolated  primary 
and standby  power lines  from  the  central  spacecraft supply. 

6.1.2.1. 5 Power  Calculations 

In order to get a feeling  for  the  memory power dissipation a rough estimate 
was  made of power dissipation  during  operation.  The  operating power dissipation 
of a memory cell array is estimated as follows: 

1. Assume a "1" is to  be  written  in a cell. 

2. The greatest supply current will be drawn by the array when the Wi line 
and the Sj line are being charged.  This is because of their  relatively high 
capacitance which must  be  charged. 

3. Assume  the Wi line  has a capacitance of lOpf, the Si line  has lOpf, the 
supply  voltage is.6.0  volts and the  voltage rise time is 100  nanoseconds. 

239 



4. 

5. 

6. 

7. 

From  these  estimates, 

IS 
= c f per  line 

= 10 pf 6 volts 
loo nanoseconds 

= 0.6 ma per line 

21s = 1. 2 ma 

To allow for  other switching transient  currents,  such as decoding  and out- 
put  gating, assume the 1.2 ma flows  continuously for  the 1 ps write  period 
rather than for 100 nanoseconds. This  gives a conservative  estimate of 
7 . 2  mw per  memory cell array.  This  value  will  not  vary  significantly with 
ambient  temperature. 

The  calculations of power dissipation are made  using 10 mw for  either a 
logic array  or  a memory  cell  array. 

Because  each of the  memory  modules  has a supply  voltage  regulator, 
assume  the input voltage  to  the  module is 10. 0 volts, with a 4  voIt drop 
across  the series regulator.  This  will  increase  the power dissipation by 
2/3. A relative high voltage drop is needed across the  regulator  because, 
during  standby  operations,  the  battery  voltage  will  drop  to  the endpoint 
voltage of 8. 8 volts.  The regulator can  maintain  6.0  volts output with 
8. 8 volts  to  the input of the  regulator. 

A summary of the  operating and standby  power  dissipation is given  in  the 
table below. 

Standby Power Standby Power  Operating  Power 
- Item Dissipation, 25°C Dissipation, 35°C Dissipation 

Array 80 W 160 pW 17 mW 

Module 5.4 mW 10.7 mW 0. 53 W(l )  

(1) Referring  to  Figure6-l2note  that only one of the  three  subassemblies is 
operating  at any one  time.  The  other two are on standby. Therefore  31 
arrays  are  dissipating power. 

6. 1. 2. 1.6 Reliability  Calculations 

The  failure rate goal for a memory  module is 1.6%  per thousand  hours. For a 
3 module memory,  the goal is 4.8% per thousand  hours, as  stated previously. An 
estimate of the  failure  rate goal for an array of 64  by 64 memory cells is determined 
below. Note that  the I S 1  arrays  for  performing  the logic  functions  in a memory 
module are  included as equivalent  to a memory cell array in determining  the  failure 
rate goal of an LSI array. 

240 



Failure  Rate No. Per Failure  Rate  Failure  Rate 
Item Per Item Module Per Module For 3 Modules - 

Connections 0.00001% 1500 0.015% 0. 045% 

8 cell  battery, 0.2%  2/3 (1) 0.13% (1) 0. 40% (1) 
0.45 A. H. 

Power supply - 
circuits 

1 0.02%  0.06% 

M I  logic and 0.0213% 67 1.43 
memory  arrays 

4. 29 

(1) This  assumes  2  standby power sources  for  3  memory modules. Only one 
may be required, or  the  central  spacecraft  supplies may be used. 

Based on the above failure  rate  apportionments,  the  array  must have a  failure  rate 
no greater than 0. 0213% per thousand  hours. This is a reasonable goal for 1973-1975. 
This goal is believed  to  be  reasonable  because of the  fact  that  stable  complementary 
MOS devices a re  being  made in the  laboratory today and there is 6  to 8 years  to 
mature this technology. A s  an example of what can  be  accomplished in 6 years, 
examine  the  demonstrated increase in the reliability of discrete  bipolar  transistors 
from 1960 to 1966. In 1960, the  manufacturers  demonstrated  failure  rate  for  a  small 
signal N P N  silicon  transistor  was 1% per 1000 hours. This was a  transistor  used in 
the Minuteman computer. In 1966, a  small  signal N P N  silicon  transistor in the 
Minuteman computer  has  demonstrated  a  failure  rate of 0. 0062%~ per thousand  hours. 
This shows better than two orders of magnitude increase in reliability. If the 
present rough experimental  estimates  are  close  to  correct,  approximately  a two 
orders of magnitude increase on the 2% to 4% per 1000 hours given earlier  for  a bulk 
MOS array would meet  the  needs of the  memory arrays  for  this  system. (l) Another 
reason  for expecting  the  goal  to  be  attained is that  the  industry is  considerably 
higher on the  learning  curve for  the  silicon  planar technology in 1967 as  compared 
to 1960. This  means  that  significant  improvements can be made in less time.  The 
array  also  has two features which &enhance.  the  reliability. One is the low number 
of external  leads on the LSI array package,  18 in the  case of the high usage  memory 
cell  array. The other is the very low power dissipation of an array. 

6. 1. 2. 2 Magnetic  Memory 

6.1.2.2.1 Introduction -" 

This  section  discusses  the  selection of the  magnetic  memory  for  use in the 
1975  technology time  frame.  The  memory  system  requirements  (the  same  require- 
ments  as given in Paragraph 6.1.2.1. ), i. e., random access,  read  write at 2 psec 
cycle  time,  reduce  the  types of memories to  be  considered  to  a  coincident  current 
DRO core  structure and a  multiword  organized  batch  fabricated NDRO structure 
(e. g., plated w i r e  today). Under today's technology, the  selection of the  most 
reliable  approach is simply  a  matter of selecting  the  approach which uses  the  least 
number of operational  circuits. However, with the advent of LSI techniques and the 

(l)It should also  be  remembered  that  the  2%  to 4% per 1000 hours was obtained 
from  minimal  data with almost no failures. 

241 



capability of fabricating  multifunction  circuitry,  the  problem must now also  be viewed 
in light of what approach is most  ammendable  to LSI techniques.  This point is made 
since the  coincident current  approach  contains  the  least  number of operational circuits 
for today's structures but because of the  drive  levels (both present and projected) 
appears  to  be  less  ammenable  to LSI. Therefore today's choice  for  the  most  reliable 
memory would be  a DRO core  structure; however  the  choice  made  here  for  1975 is a 
batch fabricated NDRO structure.  This  choice  has been made  for the  following 
four  reasons.  The  reasons  are  listed in order of importance  for  this application: 

1. The NDRO structure will  take  maximum  advantage of LSI techniques in the 
1973-1975 time  frame;  whereas  the DRO core  structure  does not  appear  to 
have  the same potential. The NDRO approach  therefore  offers  higher 
reliability both due to the increase in circuit  reliability  (less  circuits) and 
the  decrease in the  number of connections  in  the  system. 

2 .  The NDRO structure  has  less  sensitivity to transients due to  the  fact that 
it  does not require a restore cycle. 

3. The NDRO structure will  be  batch fabricated.  This  offers  the  opportunity 
to  institute  effective on-line  quality control and reliability  improvement 
programs.  These  programs will  feedback on the  production process in 
order to modify it to produce more  reliable  devices. 

4. The NDRO structure  offers  lower  power  operation  than  the DRO structure 
both due to higher  speed  operation  and  the  ensuing  lower  duty  cycle and to 
the  lack of the  need  to  regenerate  after a read cycle. 

To illustrate  the above statements,  discussions and basic block diagrams  for 
both approaches  shall  be  presented.  Finally,  the  multiword NDRO structure  shall 
be detailed (i. e., LSI circuits will  be  projected and reliability  figures  assigned) 
so that a quantitative  understanding of the  approach and its  ability  to  meet the 
multiprocessor  system  requirements  may  be gained. 

The two approaches  shall  first be described in light of today's  technologyin order to 
understand  the  effects of 1975  technology. 

6.1.2.2.2 Present Day Memories 

This  section  shall  describe  the  coincident  core  memory and the NDRO 
multiword  memory on the  basi.s of today's  technology. 

Coincident Core Memory 

A Coincident Current (CC) structure is shown in Figure 6-14. The CC approach 
under  today's technology has certain  organizational  constraints which reflect  in  the 
system organization. These  constraints are as follows: 

1. Sense  Lines are restricted  to 4K elements due to  line  delay and 
attenuation, and noise  considerations. 

2. Bit  lines are restricted  to 4K elements due to  time delay and noise effects. 

242 



REGISTER 

U SOURCE 

+Y CURRENT 

ps 

w P 

ENERATO DR & SW'S 

DIODES 

SOURCE 

DR& SW'S 

DIODES DIODES 

d 
16 Y 
DR & SW DIODES __C DR & SW'S 

16 Y 

18 BIT (18) I 

16 X I' 
DR & SW 

DATA njPIJT 
REGISTER OR'S 

I 

SOURCE 

I -  Y SOURCE 
SOURCE I 

Figure 6-14, 12x18 3D Memory (Todays Technology) 



Active Circuits 

Word  Switches - The  drive  matrix  consists of switches  arranged in matrix 
fashion so that unique  word selection is made by selecting two X switches 
(one on each  side of the  array) and two Y switches.  The  number of word 
switches  required = 128 total.  (See Figure 6-14). The  switches a re  packaged 
four  per IC with nine  connections. 

Word Diodes - Discrete  diodes are required  to  isolate  the  drive  electronics. 
The  total  required = 512 per module. These  are packaged as  sixteen  per IC 
with ten  connections. 

Word Gates - Gates are  required  to  use  the  address information  to select 
the  appropriate X and Y switches. For  the  organization shown 1 gate  per 
switch is required,  Total = 128. They are packaged as  two per IC with twelve 
connections. 

Inhibit Drivers - The  number of inhibit drivers  required is equal  to  the  number 
of bits  times  three  (the  number of 4K arrays)  or  18 x 3 = 54. These  drivers 
are  packaged separately due to power limitations.  Each  package  has six 
connections. 

Inhibit  Gates - The drivers  must  be  selected, depending upon data input, and 
clocked; as  a result each  driver  requires an  input  gate. These  are packaged 
with  the driver. 

Current  Sources - Positive and negative X & Y currents  are  required  for a 
system  total of  4. Each source  requires  approximately 10 IC's with ten  pins 
per IC. 

Timing  Generator - This  generator is required  to  generate  the  sequence of 
timing  pulses  for  the  read and write  cycles. It requires  approximately 
1 0  IC's with five  pins per IC. 

Sense  Amplifiers - The  number of S/A required is equal  to  the  number of bits 
times 3 o r  18 x 3 = 54. These  are packaged separately with ten  connections. 

S/A Gates - The  three  sets of sense  amplifiers  must  be gated  into the common 
data  register.  Total  requirements = 18-3  input "or"  gates packaged four  to an 
IC with 14 connections. 

Data and address  registers along with some  interface  circuitry  must  also be 
included;  however, this is not dependent on the  memory technology. Therefore, 
it  will not  be discussed  here. 

244 



14 BIT ADDRE69 
REGISTER 

DR'S GENERATOR 

18 BIPOLAR 12 X 18 ARRAY 
ORGANIZED 
1K X 216 

REGISTER 

'WORD 

'BIT 

I 
BIT 

Figure 6-15, NDRO Multiword Memory  (Today's  Technology) 

READ WRITE 

200 n sec I 200 n sec 

I I 
I I 

t o o  ns I 

150 n sec 

NDRO Read and Write  Signals 

245 

[WRITE 13 

[WRITE 0 1  



A summary of the  coincident current electronics is given below: 

Type Circuit CKTs - IC Connections 

Word Switches 128 32 288 

Word Gates 128 64 768 

Word Diodes 512  32 32 0 

Inhibit Driver & Gates 54  54  324 

S/A s 54  54  540 

S/A Gates  18  5 70 

Current  Sources 4 40 40 0 

Timing  Generator 

TOTAL 

1 1 0  50 

291 2760 
- - - 

This  table  will  be  compared in the following section  to  a  similar  table  for 
a  plated wire NDRO memory. 

NDRO Multiword  Memorv 

A good example of an NDRO multiword structure  in  today's technology is a 
plated wire  memory  as shown in  Figure 6-15. A multiword structure  (more than 
one 18 bit  word on a word line) is used  since it saves a  considerable amount of 
electronics. Such structures have  the  important  property  that  single  words on a 
multiword  line  can be  written into without disturbing  the  other  words an  the  line. 

The optimum  multiword  organization for  the 12K by 18  memory module is 
one K word lines of 216 bits  or 12  words.  The two permutations around 1K by 
216 (i. e., a) 2K by 108, and b) 512 by 432) a re  ruled out for  the following reasons: 

1. The  sense/bit  line is limited (by bit  drive and sense  line delay  considera- 
tions)  to 1K elements;  hence a duplication of bit drivers and S/A1s would 
be  necessary  for a 2K by 108 structure. 

2. The  word  line  length is limited  to about 240 elements by line  inductance 
and delay  considerations;  thus  a  duplication of hardware would also  be 
necessary  in  a 512 by 432 structure. 

3. It is also  the  case  that  the  total amount of circuitry is minimized by using 
1K by 216. 

This structure is shown in  Figure 6-15. The  theoretical  operation of thin  film 
NDRO magnetic memories is well  discussed in the  literature and as a result will  not 
be  presented  here; however, Figure 6-16 gives a diagram of the  read and write 
signals. It should be noted that in todays  multiword film structure  bipolar  bit write 
signals are required  to  overcome skew  and dispersion effects. As a result  the  write 

246 

. . 



cycle  time is increased  over  the read. Future  film  structures should be of higher 
quality and thus  be  able  to  take  advantage of unipolar  write  signals. One additional 
useful feature of the  multiword  devices  under  consideration,  such as  plated  wire, 
is that  they only require  unipolar word line  drive.  This not  only saves circuits but 
also connections. 

Active Circuits 

Word Switches - The  drive  matrix is organized so that unique  word selection is 
obtained  by selecting two switches  (one on each  side of the  array).  This  requires 
32 unipolar  switches on each  side.  Total  switches = 64. The  switches are 
packaged four  per IC with nine  connections. 

Word Access Diodes - One diode per  line  for  isolation of the  unipolar  drive 
electronics  total  diodes = 1024 per module. These  are packaged as eight per 
I/C with  nine  connections. 

Word Gates - A s  for  the CC memory, one gate  per  switch is required  for 
selection.  Total Gates = 64. They a re  packaged two per IC with twelve 
connections. 

Word Current  Source - The  lines are accessed by the 64 matrix  switches and 
the  current  drive is steered  to  the  selected lines. This requires  just one 
central  current  source. This source  requires  approximately 10 IC' s with 
ten  connections  per IC. 

Bit  Drivers - There  must be one bipolar  bit  driver  for  each of the  18  bits in a 
word. This  gives a total of 18  per module. They are packaged as one  bipolar 
driver  per IC with 10  connections. 

Bit Switches - Since  the  memory is organized with  each word access line 
containing  twelve  eighteen  bit  words, there  must be a selection of one of 
twelve  words for  the  bit  drivers  to  write into. This selection is carried out 
by bit  switches.  Ideally only one bipolar  bit  switch would be  required  per  word; 
however, with the  present  plated  wire  memories,  the 100 ma IB requires  four 
bipolar  return  switches  per  word  to  sink  the  bit  current.  Total  bipolar  bit 
switches = 48. These are packaged three  per IC with 12  connections. 

Bit  Driver  Gates - The  bit  drivers  must  be  selected depending upon data input 
and clocking for  the  write  operation.  They are not used in the  read operation. 
Each  bit driver  requires one selection  gate  for a total of 18 gates.  These a r e  
packaged as two per IC with 10  connections. 

Sense  Amplifiers - The  sense  amplifiers  are  relatively  simple so that one will 
be  connected to  each  bit line. A one of twelve  decoder will  then  choose the 
correct eighteen sense  amplifiers,  Total S/A = 216. They are  packaged 
separately with 1 0  connections. 

Timing  Generator - This  generator  produces  the  timing  pulse  for  the  read 
and write  cycles. It requires 1 0  IC's. 

247 



Type CKT CKTs IC - Connections 

Word Sw's 64 16 144 

Word Gates 64 32 3 84 

Bit DR's 18  (36)  18  180 

Bit  Gates 18 9 90 

Bit  Sel Sw's 48 16  192 

Current  Source 1 10 100 

Timing  Generator 1 10 50 

S/A's 216  216 2,160 

Word Diodes 

TOTAL 

1024 128 1,152 

455 4,462 

The  circuit and  connection totals given here  for  an NDRO memory should  be 
compared  to  those  given  earlier  for a DRO memory.  From  this  comparison  it  can  be 
seen  that a DRO core  structure should be  more  reliable today than  a NDRO plated 
wire structure  since  the  latter  structure  contains  more  electronics and connections. 
The power dissipation of the two memories is very  similar and ranges  from 35 to 
40 watts; however, over half the power  dissipation in the NDRO structure is from 
stand-by  power on the  sense  amplifiers.  This  dissipation will be  reduced by an 
order of magnitude  in future  systems  using power  strobing of the  sense  amplifiers. 
(The amplifiers  are  turned off for a portion of each  cycle. ) Of equal  importance 
is the  fact  that  thin  film NDRO structures  are expected  to  offer large  decreases in 
word current, bit current, and line  impedance  in  the  future.  This  should  enable 
these  structures to take optimum  advantage of LSI techniques  in  the 1973-1975 
time frame.  For  the above reasons a  thin film, multiword NDRO structure is 
chosen  over a DRO structure   for   mmetic  main  memorv  in  the 1975 time  frame. 

6.1.2.2. 3 Future Memory  Organization 

This  section  describes  the  organization of a 12K word 18 bit NDRO memory  for 
the  main  multiprocessor  memory. A particular  memory  device is not specified, but 
the  chosen  device  will  be a  thin film  batch  fabricated  structure with  multiword 
capability, (e. g., plated  wire,  bi-core are applicable  from  today's technology). In 
order to describe  the  projected NDRO memory  certain  assumptions about the 
performance  characteristics and modifications  to  present  circuit  approaches  are 
required, These assumptions and modifications are listed below. 

Assumptions: 

1. The memory will be organized as one IS word lines by 216 bit lines. The 
reasons for this are the same as those given for the current NDRO structure. 

248 



The  line length  limitations  may  be  relaxed  somewhat  in  the 1975 time  frame, 
but this organization still requires  the minimum  number of circuits. 

2. One crossover  per  bit  will be  used.  Orthogonal structures  require common 
mode noise  cancellation.  This  can  be  achieved  in 2 ways a) 2 crossovers 
per  bit  operation o r  b) addition of a common  mode cancellation  line 
(dummy non magnetic element).. The word  line  inductance is a  function of the 
number of crossovers down a word  line; so that  for 2 crossovers  per  bit 
the electrical length of the  word  line is doubled. If the  second  technique 
is employed (i. e. dummy line)  then  the  eleotrical  length of the  line is only 
increased by the  ratio of active  to dummy lines. For example, 1 dummy 
for 4 active  lines  gives a 20% increase  in length, 1 dummy for 8 active  lines 
gives an 11% increase  in length. 

The  latter  approach  will  be  used in this  system with one dummy line per on 
active  lines.  (n  determined by noise) 

3. Improvement in present thin film  memories o r  additions of new structures 
should  enable the following properties  to be  readily  achieved by 1975. 

a. Unipolar  write  current - The signals for  the  read and write  cycles 
a re  shown in Figure 6-17. Note the  difference between this figure 
and Figure 6-16 where a bipolar  write  signal  was  used  to  overcome 
skew  and dispersion  effects.  The  read or  write  operation will take 
less than 500 qsec. 

b* 'word = 200 ma 

c .  Lit = 25 ma 

d. Z o  = 30 Sl's 

These  properties will enable LSI circuits to be used  for  the  memory  electronics. 

4. Bipolar  bit  currents  will  still  be  required in order to be able  to  write "lis" 
and "O1sl ' .  

5. The  timing and control  will  be packaged into one LSI chip. 

Modifications for LSI 

1. 

2. 

3. 

One word driver with base  to  emitter  selection will  be  used  for  each of the 
1024 lines.  This  approach  will  be  used  instead of matricizing  drivers and 
switches  because  the  latter  approach would require a large  number of 
isolation diodes. An MI pack can  be  fabricated with  a number of drivers 
almost as easily as with a number of diodes. As a result  matricizing 
the  switches would actually  require  more LSI arrays. 

One sense  amplifier per line  will be used. This is again for  the  reason  that 
this approach  requires  less LSI arrays than  an  approach  using sense 
amplifiers and  gates. 
One bit  driver  per line will  be used  for  the same reason as given  in 1 above. 

249 



READ WRITE 

m UNIPOLAR 

["RITE 1) 

[WRITE 0 3  

Figure 6-17. Future NDRO Read and Write  Signals 

The above points  enable a memory  structure as shown in Figure 6-18 to  be 
specified.  This  structure  takes  advantage of LSI techniques to package  a  number of 
drivers,  switches, and sense  amplifiers in arrays. The  packaging of these  circuits 
in arrays was  estimated  for  the  1975  time  frame and is specified along  with con- 
nections,  and  reliabiIity per array  in  the following material. Figure 6-18 also 
shows  input/output and control  sections going to  the  processors and 1/0 units. These 
modules were  briefly  discussed  in  Paragraph  6.1.2.1. They  will be added  to the 
reliability  calculations  for  this  memory as 9 arrays with 270 connections and a 
reliability of .02%  per  array.  The functions of this  interface  logic  will  be  discussed 
again  in  the following section. 

Based on the above discussions, a reliability  estimation  for this memory is 
given below: 

Word Switches 16 Modules 1024 CKTS 

Matrix of 64 SW's arranged 8 x 8 with 64 outputs 

17 Logic Inputs 8x, 8y, lz 
2  Power 
1 Current  Source 

This  can be accomplished  because only one  switch is actuated  at any  one time. 
Total Connections = 84 
Anticipated Reliability = 0.02%/1000 hrs  

250 



TIhlING AND 
CONTROL 

FROM DATA 
TRANSFER CONlXOL 

I/olq-q 
18 INPUT 

p 1 4 4  OUTPUT +- 
p1 - 

I D 1  
4 t 

pit, DATA  TRANS 

p2 KYm +- 
p2 

J 

I. 

I DECODER 
1 0 F  16 I 

DRIVERS 
12 BlT "1" I 12 LINES 

I I  I I I 1 
12  BIT  "1" 

REGISTER - 12 BIT "2" 
DRIVERS 

12  LINES 

12  BIT "2" 12K X 18 MEMORY ARRAY 

216 BIT LINES) 
(1024 WORD LINES BY 

Figure 6-18. Future NDRO Memory 



Bit  Driver 18 Modules 216  CKTS 

Module contains 12 Bipolar  Bit  Drivers 1 DR. per module is activated 
per  write time 

Connections.  12 Logic Line to  Select 1 of 12 

2 Data Lines (1's & 0's) 

2 Timing 
3 Power 

12 Output Lines 

Total Connections = 31 

Anticipated  Reliability = 0. 01%/1000 h r s  

- S/A 18 Modules 

12 S/A's per module 

216  CKTS 

~ 1 1  S/A'S receive signals for logic select. S/A output to  be  processed 

12 Logic Lines  to  Select 1 of 12 

2 Strobes 

4 Power 

15 Input 

1 output  Total  Connections = 34 

Anticipated  Reliability = 0. 01%/1000 h r s  

Timing  Generator 1 Module 

4 Input 

12 output 

4 Power 

Total  Connections = 20 

Anticipated  Reliability = 0. 005%/1000 hrs  

Address  Register 1 Module 

Inputs 15 Logic 

Output .28 
Power - 4 

Total = 47 

20  CKTS 

14 CKT 

252 



Data Re asters 

Inputs 36 

Outputs 18 

Timing 2 

Power 4 

# Connection 60 

1 Module 

Reliability = 0. 015  %/1000 hrs 

Decoder A (2- 1of 8's) 1 Module 

Input 24 

Output 16 

Power 4 

Total  Connections = 44 

Reliability  0.01%/1000  hrs 

Decober B (1 of 16) 

Input 8 

Output 16 

Power 4 

Total = 28 
- 

Reliability = 0. 01%/1000 

Decoder C (1 of 12) 

Input 8 

Output 12 

Power 4 

Total = 24 

1 Module 

Reliability 
0.01%/1000  hrs 

253 



Array 

Word Circuits 

Bit DR 

S/A 

Decoders A 
B 
C 

Address Reg 

Data Reg 

Timing Gen 

Current  Saurce 

Logic Arrays 

Total 

Reliability 

1 

1024 

216 

216 

2, 1 of 8's 
1 of 16 
1 of 12 

14 

18 

1 

1 

5 

Table 

L. s. I CKTS 

16 

18 

18 

1 
1 
1 

1 

1 

1 

1 

9 

Array 
Word CKTS 
Bit 

S/A 
Decoders 
Register 
Register 
Timing 

*Current  Source 

Logic Arrays 

Total. 

68 

# Connections/Mod 

3, 000 

84 (1344) 

31  (558) 

34 (612) 

44 
28 
24 

47 

60 

20 

10 

270 (total) - - 3000 
Per Mod 

Reliability 

0.02%/1000 h r s  

0.01% 

0.01% 

0.01% 
0.01% 
0.01% 

0.01% 

0.015% 

0.005% 

1.0% 

.02%/1000 h r s  

x3 

3,000 x 0.00001 96 = 0.030%/1000 hrs  0.90g/lOOO hrs  
16 x 0.02 

18 x 0.01 
18 x 0.01 
3 x 0.01 
1 x 0.01 
1 x 0.01 
1 x 0.005 
l x  1 
9 x 0.02 

0. 32 
0. 18 

0. 18 

0. 03 

0. 01 
0. 01 

0.005 
1. 0 

0. 18 

0. 96 
0. 54 
0. 54 
0. 09 

0. 03 
0. 03 

0.015 

N/A 
0. 54 

1.945%/1000 hrs 3.835%  /lo00 hrs 

* Current  Source need  not be  repeated  with  increased  Modularity 

264 



The above calculations  show  that the NDRO magnetic  structur.e should  be able 
.to  easily  meet  the  reliability  requirement of 4.8% per 1000 hours  for  the  multi- 
processor  main  memory. 

A rough  power calculation was carried out using  the  current  levels  given  earlier 
under  llassumptions"  in  order  to  get a feeling  for  the  memory power  dissipation. 
Assuming  the sense  amplifiers  will  use power strobing,  this  memory  will  dissipate 
about 11 watts per 12K module. 

The  timing of this  memory with a processor is the  same  as  described in 
paragraph  6.1.2.1.  The NDRO magnetic  memory  will  easily  be  able  to  setup  addres- 
sing  in 500ns and then read or  write within another 500 ns.  This will  provide  informa- 
tion  to  the  processor by the end of bit  time two. 

It should  again be noted here  as in the  introduction  to  the  memory  section  that 
both  the NDRO magnetic and semiconductor  memories a re  able with little  risk to 
meet  all of the  multiprocessor  main  memory  requirements.  The  semiconductor 
memory  uses  substantially less power  but it offers a slightly  greater  risk in being 
able  to  meet  the  reliability  requirements  in  the 1975 time  frame. A s  a result 
neither  memory  structure  can be  chosen  at this time. Further development and 
investigation are  necessary  in  order  to  make a  valid  choice. 

6.1.2. 3 Memory  Interface  Hardware 

The  multiprocessor  memory  must  have a good amount of interface  hardware in 
order to  handle the communications  to  the processors and 1/0 units.  The primary 
parts of this  hardware are: 

1. 

2. 

3. 

A six bit  round-robin scanner is used  to  choose  the  processor o r  1/0 unit 
to  receive the  next memory  cycle. For  the given mission only four  bits 
of the  scanner will  be used  since only two 1/0 units and two processors 
are present.  The  scanner is simply an  asynchronous  counter  that 
sequences  through  all  the  memory  request  lines  until one is found  up. 
Since  the  count is done in an  asynchronous  fashion, it will take  less than 
200 ns  to sequence  through all six states. 

A six bit lockout register is used  to hold the 1/0 or  processor modules 
that are locked  out of the  memory.  The  operation of the lockout has been 
explained  in  detail in Section IV. 
A quantity of timing and control  circuitry is included to  generate  the 
memory  timing and the  interface  signals  to  the  processors and memories. 
The  operation of this hardware is explained  in  paragraph  6.1.2.1 and 
ehown in  Figures6-12and 6-18. It amounts  to about 9 chips of MOS/SOS 
hardware.  This could be  reduced  to  four  to  five  chips if a 150 pin pack is 
developed. An interface  description of the  control  signals  to  the  processor 
is given in paragraph  6.1.1. A similar  description  for  the  control  signals 
to  the 1/0 units is given in the  following section  describing  the 1/0 units. 

Both the  semiconductor and magnetic memories have  been  described as  
capable of completing their  read and write  transmissions in one microsecond.  This 
is the  preferred method of operation  since  slower  operation would not  simplify  the 
memory  circuitry. A s  a result  the  memories will  be  able  to be recycled  in 1. 5 ps 

255 



instead of the  required 2 ps. This increased  speed  can  clearly  be  used  to  decrease 
any  queueing at the  memories. However it could also  be  used by the  processors on 
instructions  that only require  three  bit  times  for execution. For  example, if an 
instruction  cycle  does not require indexing with the  Tn  registers,  the  processor 
control unit can terminate,  at  the end of bit  time 3, all  instructions  that do not 
have any functions  besides indexing to  perform  in bit time 4. When the  final  control 
sequences  for  the  instructions are laid out, this 1. 5 ps memory  cycle  can  be  taken 
advantage of in a number of instructions. As a result  the  approximate  instruction 
execution times given earlier in  the  instruction  list  will  be  decreased in some  cases. 

2 56 

I 



6.1.3 Input/Output Unit 

6.1.3.1 Introduction 

The  input/output section of the  multiprocessor is a hierarchical  structure with 
the  sensors at the  bottom, the  conditioners  next, and the 1/0 units on top. This 
structure is shown in Figure 4-17 and was  discussed  in  Section IV. The  sensors are 
devices  that  carry out the  actual  monitoring and control  tasks in the  spacecraft.  The 
conditioners are specialized  to  provide  the  proper  control  signals  to  the  sensors 
attached  to them.  They receive  commands,  such as  read zind write,  from  the 1/0 
units and then use  these  either  to  obtain  .data  from  the  sensors  or  to  send  the  sensors 
data o r  command sequences  to  be  executed.  The  communication  links between the 
sensors and conditioners and conditioners and 1/0 units  are  serial  since  the  sensors 
pass  relatively  small  blocks of words at low repetition  rates.  The 1/0 units  them- 
selves  are not closely  associated with  individual sensors  or  devices. They simply 
receive  calls  for 1/0 actions  from  the  processors  (through  the  memories) and then 
send a read or  write command  (along with a  data word if appropriate) and sensor 
name  to  the  appropriate  conditioner  or  to  the bulk storage unit.  (Communication  to 
the bulk storage is over  parallel  lines  since  this unit  will  have high access  rates 
within  a  block of storage.) The  conditioners then control  the  sensor  operations 
including  sending  data  back  to  the 1/0 unit if necessary. 

Many of the  techniques  that  will be used in the Mars Lander Mission for handling 
guidance and control,  status  monitoring, and scientific  data have  been established; 
however, there will  certainly  be many new developments. A s  a  result  the  sensors  to 
be used in such  a  mission are  presently not well  defined,  especially in the area of 
scientific  experiments.  This of course  means  that  the  conditioners  also cannot  be 
well  defined since  their  primary  task  is to  generate  control  sequences,  carry out 
analog  to  digital  conversion,  etc.  for  the  sensors. However, certain  general  proper- 
ties of the programs  necessary  to  operate upon and handle  the  data  from  the  sensors 
can  be  defined. These  properties,  typical of a wide range of spacecraft  programs, 
will  be  used to obtain  a first approximation to the  design of the 1/0 units. 

There  are  three  basic 1/0 program  types:  those  associated with periodic 
sensors, the bulk storage unit, and request and background programs. The programs 
associated with the  periodic  sensors are  characterized by relatively low periodicity 
rates, a  maximum of about 20 repetitions  per second,  and short  to medium sensor 
waits  for  single and multiple  word  data samples.  Clearly  there  are  some  exceptions 
where  the  sensor  waits may be  hundreds of microseconds, but in these  cases  the 
processor should call  the 1/0 data long before  the  data is needed.  Typically,  the 
periodic  data  will  be  called  from  the  header of a program in order  to  waste  the 
minimum  amount of processor  time waiting for  data. 

The  programs  using  the bulk storage unit  will generally  initialize  a  transfer of 
a  data block to or  from the  bulk storage unit  and  will  then relinquish  control of the 
processor.  The  access  rate within a block of storage in the  bulk storage unit  may be 
as low as 1 0  ps or  less;   as a result, the 1/0 unit must  be  able  to  adequately  interleave 
these  transmissions with the  lower rate 1/0 programs. The bulk storage unit  will be 
used  relatively  infrequently  for  its  main  task of reloading  the  memories at phase 
changes or  reconfigurations, but it must  also  act  as a data  buffer  for TV pictures  at 
Mars (approximately 30, 000 bits/second),  for  certain  scientific  experiments, and 
fo r  telecommunications  (approximately 20, 000 bits/second).  For  these  latter  tasks 
during  certain  phases of the  mission,  the bulk storage unit  may be  required  to trans- 
mit  blocks of data  to  the  multiprocessor  for  computation  every few hours;  however, 

2 57 



since this is  transmission  from a buffer, it can  simply  be handled as a background 
program and therefore not interrupt  the  periodic  programs.  The  third  type of 1/0 
program is that  associated with request and  background programs.  These  programs 
along with the  Executive  generate  all  requests  for  data  from  the bulk storage as 
discussed above.  They also  require  serial  sensor  data.  (This  data may experience 
long sensor  delays.) The  background and request  programs  are scheduled as time 
is available and consequently are  interruptible by the  periodic  programs. 

6.1.3.2 1/0 Unit Connections and Structure 

The 1/0 unit is shown connected directly  to  the  memory in Figure 4-17 ; 
however,  consideration  was  also given to connecting  the 1/0 unit to the processor 
instead of to  the  memory.  The  primary  problem with the latter type of connection is 
that  the 1/0 unit must  preempt a processor  for  all  its  memory  cycles. Note that 
this is the case in a single  computer  system, but in a  multiprocessor  the  memory 
modules  can service  more  memory  cycles than the  processors can  provide. For the 
periodic  type  programs  I/O-processor  connections  present  no  problems;  for if the 
1/0 unit  was  connected directly  to  the  memories,  it would most  likely  be  using  the 
same  memory a s  the  processor and would consequently steal  a  memory  cycle  from 
the  processor anyway. Programs  that  transfer blocks of data  to and from  the bulk 
storage could be set up so that they do not use  the  same  memory  that  the  processor 
typically uses  for  program  storage. In this  case, with  connections  directly to all 
memories, the 1/0 unit would not  have  to preempt  memory  cycles  from  the  proces- 
sors  and as  a result would take good advantage of the system  resources (i. e., the 
extra memory module).  However, if the  1/0  unit  was  connected  to  the processors, 
it would have to  preempt  processor  memory  cycles even though the processor and 
1/0 unit were  using  different  memory  modules.  There  are  other  less  important 
reasons  for  using  I/O-memory  connections, but the above discussion should  be 
sufficient  to  demonstrate  that having  the 1/0 units connected to  the  memory  provides 
the  most  flexible  multiprocessor  system. 

Figure 6-19 shows  the registers and main  connections  in  the 1/0 unit. This 
unit is designed so that  transfers  from both the bulk storage and the sensors can be 
conveniently interleaved. To enable  this,  there is a set of registers  to handle b u k  
storage  requests (BR, PMAC, PC-Ch,  PWC) and a set to handle sensor  requests 
(ASR, SMAC, Sc-Ch, C-D, SWC). The basic function of each of these  registers 
will  be outlined below. 

6.1.3.2.1 Registers 

MR - Memory register: The  memory  register  receives  data and instructions 
from  the  memories and sends  data  to  the  memories.  The  data going to  the 
memories can  be from  either the sensors (ASR) or  from  the bulk storage (BR). 

- ASR - Assembly  shift register:  This register receives  serial  data  from  the 
conditioners and sends  it  to the MR for  transmission  to  the  memory.  It is 
also  used  to  send  serial  data and control  words  to  the  conditioners. 

- SMAC - Serial  memory  address  counter:  This  counter  is  set up  by the 1/0 
control word from  the  memory. It holds  the  memory  location for  reading o r  
writing serial 1/0 data. This value is decremented by the  control  circuitry 
after each serial word is transmitted  either  to the  memory or  to the conditioners. 

258 



to 
Ln 
(0 

CONDI- 
TIONERS 

TO CONDI- 

CONTROL 
SIGNALS T O  
REGISTERS T O  MEMORY 

CONTROL  SIGNALS 

SMAC 1 6  

M R ASR 

MR - 

COMMAND 
DECODING 
AND  CONTROL 
GENERATION 

- 
ZERO  RESET 

MR  MR MR MR MR M R  MR 

I + + + I 
MR  MR 

I t 

MR 

TO BULK STORAGE 
FROM BULK 
STORAGE 

MR 
& 

"r' PMAC 1 6  

7 BR MR 
1 
I 

PC 2 Ch 1 

MR  MR 

1 I 

MR RESET  (FROM CONTROL  SECTION) 
TO CONTROL PANEL 4 1  4 1  

$ 4  
'1. REQUEST  PROGRAM STATUS WORD: 



SC-Ch - Serial command  and  chain  bit:  The  command  and  the function of the 
chain  bit  will  be  discussed later in this  section.  The SC bits  are held for con- 
trolling  memory  cycles  (read o r  write) and for  sending  commands  to  the condi- 
tioners.  The Ch bit  influences  the  generation of control  signals in the 1/0 unit. 

&D - Conditioner and device  registers:  This  re  'ster holds  the  name of the 
conditioner and sensor  participating in a serial I F  operation.  The  register is 
loaded from the MR. It  sends  the  device  name  to  the  specified  conditioner  as 
part of the  conditioner command  word. 

SWC - Serial word count register:  This  register  specifies the  number of serial 
1/0 words to  be  transferred.  It is loaded from the MR and is decremented  along 
with the SMAC  by the  control  circuitry  after  each  serial word is  transmitted. 
The serial  operation is  terminated when this  register  is equal to  zero. 

- SB - Serial busy  flip  flop: This  flip flop i s  used  to  notify  the memories on 
request  that  the  1/0 unit is busy executing  a serial 1/0 program. It is reset by 
the SWC register when this  register  is  decremented  to  zero. 

- SNR - Scanner register:  This  register  is used  to  sequentially  grant  the  memo- 
ries  access  to the 1/0 unit. It  sequences  through  the  request  lines and halts  as 
soon as  a  line is found up. The scanner will  sequence  through  the  request  lines 
as long as  ei ther SB or  PB  are  zero, o r  the lockout register  is not set. 

- Lockout register: The register  is  set by a  control  line  from  each of the 
four (three  for  this  mission)  memories. A memory  will  set  the lockout register 
at the start of a critical computation phase or   a t  the start  of a periodic  program 
execution. For  a  memory module to set the lockout, it  must  set  the lockout  flip 
flops  associated  with'the  other  three  memories.  This  will  enable only this 
memory  to  use  the locked 1/0 unit for  serial  or  parallel  1/0  transmission. 
The  setting of the lockout register  also  causes the 1/0 unit  to  be interrupted and 
store  its  status in the  interrupting  memory. 

BR - Buffer register:  This  register  receives  parallel  data  from the bulk storage 
and sends  it  to  the MR for  transmission  to  memory.  It  is  also used  to  send 
parallel  data and control  words  to the bulk storage unit. 

PMAC - Parallel  memory  address  counter:  This  counter,  set up  by the 1/0 
control  word, holds the  memory  location  for  reading  or  writing  parallel 1/0 
data.  This  value is  decremented by the  control  circuitry  after  each  parallel 
word is  transmitted. 

PC-Ch - Parallel command and chain bit:  These  bits function just as the SC-Ch 
bits only for  parallel  transfers. 

pwC - Parallel word count register:  This  register functions just  like  the SWC 
except  for  parallel I/O operations. 

- PB - Parallel busy  flip flop: This  flip flop has the same function as  SB except 
for  parallel  operations. 

There are also a  number of control and status  flip  flops shown in Figure 6-15 
that  will  be  explained later in this  section. 

260 



6.1.3.3  Timing 

The  timing in the 1/0 unit is fairly  simple  and  can  be  carried out by a few one 
shot  multivibrators.  These  devices  must  time  the  memory  interface  request  signal 
(500 ns). the  shifting of the ASR (500 n s   o r  1 ps), and the  acceptance  interval  for  the 
memory  request (14 ps as given in  section 6.1.1).  Some  additional timing may be 
necessary  for  timing  the  requests  to  the  conditioners, but this cannot be  specified at 
this  time.  The  remainder of the  actions  carried out by the 1/0 unit are asynchronously 
timed  (the  conclusion of one event starts another). If in  the 1975 time  frame a small 
simple  hardware  clock is developed, it could be  substituted  for  the  multivibrators. 
However, the  multivibrators  will  probably  prove  to  provide  the  least  complex  timing 
for  the 1/0 unit. 

6.1.3.4 Memory Interface 

The  lines on the  1/0  memory  interface a re  given below. It should  be  noted that 
except  for  a few additions and deletions,  this  is  the  same  as  the  processor-memory 
interface. 

Component I/O 

Interface Memory 

Output (to  memory) 

request 

address/data 

read/write 

lockout 

serial busy 

parallel busy 

accept 

One separate line  to  each  memory.  It is  used  to 
request  memory  cycles. 

18-bit two-way bus  common  to all  memory  modules. 
It  sends  addresses and data  to the memory and 
receives  data and control  words  from the memory. 

Bit 18 of an address on the address/ 
data bus. This  line is  used  to notify the  memory 
of a  read  or  write  request. 

One separate  line  to  each  memory. It notifies  a 
memory  that  it  is locked  out of this  1/0 unit. 

One common  line  to all  memories.  This  line 
notifies  all the memories  that  this I/O unit i s  
carrying out a serial I/O program. 

One common  line to  all  memories.  This  line 
notifies  all  the  memories  that  this I/O unit is  
carrying out a parallel  1/0  program.  It  should 
be noted that both a serial and parallel busy a re  
required  since it is possible  for one to be busy  and 
the  other  not  busy o r  free to  service a  request. 

One separate  line  to  each  memory.  This  line  notifies 
the memory  that its request fo r  I/O access is granted. 

261 



Input - 
busy 

request 

lockout set 

lockout 

One separate  line  to  each 1/0 unit  from  each 
memory.  It  notifies an I/O unit of acceptance of a 
request. 

One separate  line  to  each 1/0 unit  from  each 
memory.  It is used  to  request  the 1/0 unit  to 
receive a control  word  from  the  memory. 

One separate  line  to  each 1/0 unit from  each 
memory. This line requests the 1/0 unit to lockout 
all  other  memories. 

One separate  line  to each 1/0 from  each  memory. 
This line  notifies an 1/0 unit if  it is locked out of 
any memories. 

address/control  Same as the  address/data  bus given in output. 

The  timing and functions of the above lines  that are  associated with an 1/0 unit 
requesting a memory  cycle are  the  same  as  for a processor  requesting  a  memory 
cycle.  The  description is  given below. The  operation of the 1/0 unit control  section 
to  provide  parallel or serial  addresses,  etc., is described  later in this  section. 

1. The 1/0 unit  sends  a  request  to  a  memory ( ' ' O f f  to "1" transition  occurs on 
the  request  line). At the  same  time  it  places  the  memory  address and 
read/write  request on the  address/data  lines. 

2. After the  memory  scanner  chooses  the  requesting 1/0 unit for a  memory 
cycle,  the  memory  picks up the  address and read/write  information  from 
the  bus. It then sends  the 1/0 unit a not  busy  signal (''0" to "1" transition 
occurs on the  busy  line).  This  signal is  also  used  to  start  the 500 ns 1/0 
request one shot.  The  memory uses the  next 500 ns  to  address the specified 
memory  position and to load its  data  register if a  read i s  required. 

3. For a write operation  the 1/0 unit uses the "0" to 111" transition of the  busy 
signal  to load its MR and memory  bus with the  data word for  memory. 
After 500 ns the 1/0 unit request  signal  will  turn off. The " 1 ' l  to "0" transi- 
tion of this  signal  causes  the  requested  memory  to  read  the  contents of the 
1/0 memory  bus into its data register. 

4. For a read  operation  the 1/0 unit MR is loaded  within 1 ps of the  acceptance 
of its request. The  load is  accomplished by the  memory  placing  the  data 
on its  bus  to  the  requesting 1/0 unit and then  turning off its busy  line. The 
1/0 MR is loaded from  the  bus by the "1" to "0" transition on the busy  line. 

The  lflock out set" line  causes  the 1/0 unit to be  interrupted on its " O f t  to "llf 
transition.  The lockout set  notifies an I/O unit that it is  about to  become involved in a 
periodic 1/0 program execution.  The "lockout" line from a memory, on the  other hand, 
notifies  an 1/0 unit that it is locked out of this  memory module.  The programs  will 
schedule 1/0 so that  an 1/0 unit will  never  be  sending  data  to a memory module from 
which it can be locked  out during  periodic  program  executions.  This  means  that 1/0  
unit one, for  example, will use memory  modules one and three  to  store 1/0 variables 

262 



but  not memory module two since  this latter memory  will  lock out all 1/0 units  except 
1/0 unit two during  periodic  computations.  This  programing  restriction  is  necessary 
so that  an 1/0 program will  not  be  interrupted due to its memory  not being  available. 
This situation would require that  the  serial or  parallel 1/0 program involved store its 
status in its primary  memory;  however,  the  program  that  initialized  this 1/0 program 
would not be able  to  be  notified conveniently that its 1/0 has been interrupted. A s  a 
result there  is  not a convenient method of reinitializing  the 1/0 program when the 
locking memory is again  free. An additional  problem is that  this  type of an interrupt 
would require  nesting  since  more than  one memory could  lock out the same 1/0 unit 
before  the  original 1/0 program is brought  back  into  execution.  Future  investigation 
of the above problem should be carried out in order  to  try  to  relieve the  programing 
restriction. 

In order  to explain  the rest  of the  memory  interface  lines,  a  discussion of the 
CIO (call I/O) instruction is  necessary. The CIO instruction is used by the  processor 
to  initiate 1/0 operations by sending two control  words  to  the I/O unit from  the  memory. 
The  1/0  control  words will  be described  shortly, but in any case two words are  neces- 
sary  to  initiate an 1/0 operation.  The processor  sends the memory  a  request  for  a 
memory  cycle and also a signal on a separate  line ( the '1/0" line)  to  the  memory. 
(This  was  explained in section 6.1.1 under "Memory Interface. It) The  memory then 
responds  to  the  processor in the normal  manner  except  for two changes.  The  proces- 
sor   is  granted two memory  cycles in a row (the  scanner  is inhibited while the ttI/Ott 
line is up); and the  data is sent  to an 1/0 unit  instead of back to the  requesting  proces- 
sor. In order  to  determine which 1/0 unit to send  the  data to, the  memory looks at 
the  first two bits of the first control word and interprets  these  as an 1/0 unit name. 
The  third  bit of the  control word is also checked to  see if  a serial  or  parallel 1/0 
operation is being requested. After  the  above i s  accomplished  the  memory  will  send 
a request  to  the  proper 1/0 unit i f  all of the following three conditions do not exist: 

1. The  memory is locked out of the 1/0 unit. (The lockout line from the 1/0 
would be one in this  case.) 

2. The  memory  has  a  request  for  a  parallel  1/0  operation and the  parallel 
busy line is up from  the  specified 1/0 unit. 

3. The  memory  has  a  request  for a serial 1/0 operation and the serial busy 
line is  up from  the  specified 1/0 unit. 

If any of the  above three conditions exists,  the  memory  sends  the  1/0 BL (l/O busy or  
locked out) signal  back  to  the  processor.  This  terminates  the CIO instruction and 
both the  memory  and  processor are freed. If none of the  conditions  exists,  the 
memory's  request  to  the 1/0 unit  will  be granted within 2 ps. The "0" to "1" transition 
of the  accept  signal  from  the 1/0 unit  will load the  memory  bus and the 1/0 MR with the 
information  from  the  memory's  data  register.  The  accept  signal  will then remain up 
for  the next  memory  request.  In  order  to  generate  the  next  request  the  processor 
increments  the  address of the previous 1/0 control word by one and sends  this new 
address  to the  memory.  The  memory  loads  the  second  control word  into its data 
register and sends a request  to  the 1/0 unit  with its  accept  line up. The 1/0 unit will 
then turn off its accept  signal.  The tlltl to t t O t '  transition of this  signal  will  again load 
the  memory  bus  and  the 1/0 memory register with the  information from  the  memory's 
data register. It should also be  noted that between the receipt of the first and  second 
control  words  the 1/0 unit  must  distribute  the  contents of the first control word to  the 
proper 1/0 registers. The  execution of the  complete CIO instruction (including 
processor  instruction  access)  takes six microseconds. 

263 



6.1.3.5 1/0 Control Word Format 

The  previous  subsection  presented  a  discussion of the CIO instruction.  The 
control  words  called by this  instruction  will now be  presented and discussed. 

The 1/0 control word format  is shown below: 

bits: , k o Z ,  3: 10 , 11:  12 , 13 , 1 4 :  
18 

Word 1 Device Name Command Chain Count Word 

bits: 19:  20  21: 36 

Word 2 Count Word 1 Memory Address 

, Unit 
~- ~ ~ - 

Bits 

1 :2 1/0 Unit: These  bits  are decoded by the  memory  during  a CIO instruc- 
tion  in order  to  determine the 1/0 unit to  receive  the  control  words. 

3:lO Device  Name: If bit  three is 1, the  device is  the bulk storage.  Bits 4 
to 10 will then be  loaded  into  the BR to be sent  to  the bulk storage  as 
the  upper  seven  address  bits for this unit. If bit three  is 0, the  device 
i s  one of the  sensors connected  to the  conditioners.  Bits 4 to 6 will 
then represent the  conditioner and bits 7 to 10 will represent  a  device 
(sensor) on the  chosen  conditioner. In the  latter  case,  bits 4 to 10 will 
be immediately loaded  into  the C-D register  to  prepare  for  receipt of 
the  next  control  word.  The  device  name  organization mentioned  above 
provides  for  a  total of 128 devices.  This should  be  sufficient since 
many of the sensors  will  send  more than one word on request. Actually 
only 126 device  names  will  be  usable  since one device  name  will be used 
to  call  a  request  program  status  word, and a  second  will be used  to  call 
a  failure  status word. These  status  words will be discussed  later in 
this  section.  The  correct  trade-off between bits  for  the  conditioner 
name and bits  for the sensor  name cannot be made at  this  time, but that 
shown will  probably  be  close  to  correct. 

11:12 Command:  Bit  twelve i s  used  to  denote  read (I/O unit reads  from  the 
memory) or  write (I/O unit writes into  the  memory). Bit  eleven is used 
along with the  chain  bit (bit 13) to  specify  immediate  reading o r  discrete 
reading o r  writing.  Immediate  reading  means  that  the  second  control 
word from  memory  actually  contains  a  data  word  rather than a  memory 
address,  Discrete  words  are  sent  to  conditioners in order to  provide 
special  control  sequences or to  provide  control  signals  such as “turn off” 
to  devices.  Discrete  words  are  also  sent  from  the  conditioners  to  the 
memory in order to  provide  the  computation system with status  informa- 
tion on the  sensors and conditioners. A listing of the above instructions 
is  given below: 

B11,  B12 = 00 - Write: A word o r  words are obtained from the speci- 
fied  device and written  into  the  memory  location given by the SMAC or  
PMAC. 

2  64 



B11, B12 = 01 - Read: A word o r  words  are  read  from  the  memory 
location  given by  SMAC o r  PMAC and  sent  to  the  specified  device. 

13 

B11, BIZ, B13 = 100 - Not used. 

B11, B12,  BIJ = 110 - Read  immediate:  The  second  memory  control 
word is used  irectly  as  a  single  word of data  for the  specified  device. 
This  command will have  no  real  use with  the bulk storage  unit, but it 
should be  useful for  a  number of serial  devices. 

B11, BIZ, B13 = 101 - Discrete  write:  This  command is used  to  pick 
up a discrete  word'from  the  specified  conditioner  and  device  or  from 
bulk storage.  The  exact  contents of the  discrete  words  cannot  be  speci- 
fied  until  the  devices  themselves  have  been  specified.  The  chain  bit is 
used  for  command  extension  in  this  case  because no more than one 
discrete  word will typically  be  picked up at  a  time. In the  cases  where 
it would be  desirable  to chain an additional CIO must  be  executed. 

B11, B12, B13 = 111 - Discrete  read:  This  command is used  to  pick up 
the  second  control  word as  a discrete  word and send it directly  to  the 
specified  device.  The  chain  bit  comments given  above  apply here. 

Chain: The  commands  discussed  above  use this bit  for  command  exten- 
sion when bit  eleven is 1. When bit  eleven is 0, this bit is used  for 
command  chaining.  In this  case  the I/O command is executed on the 
specified  number of words  (see  word count  below); and then  instead of 
terminating  this I/O program when the  word  count register (SWC or  
PWC) goes  to  zero,  the  word count register is incremented  twice  and a 
request is sent  to  the  memory. ?tvo control  words a r e  picked up from 
the hvo memory  locations following the  previous I/O program  data  area. 
(These  words were set up  by the processor  prior  to  its execution of the 
initial CIO instruction.)  These  control  words a r e  then used  to  continue 
execution of an I/O program with serial  or  parallel  devices. If serial 
(parallel)  devices  were  used in the first I/O program, they must  also  be 
used in the  chained  program;  otherwise  a new control  word could be 
brought in for a busy parallel  (serial)  device.  This  chain  can  be  contin- 
ued a s  long as  desired.  The chaining of I/O programs may  prove  to  be 
particularly  useful  for  transferring  large  blocks of words  behveen 
memory and the bulk storage unit. Note that  using  the  chaining  feature 
saves the  trouble of requiring  the  processor  to  monitor  the  transfer of 
data and to  execute  a  number of  CIO instructions. 

14:20 Word Count: These  bits are loaded  into the SWC o r  PWC registers. 
These  registers  are then  used  to count the  number of words  transmitted 
in  the I/O program  and  to  terminate  the  program when the count goes  to 
zero.  The SWC register only uses  bits 17 to 20 since a single serial  
device will probably  never  transfer  more  than  sixteen  words;  however. 
if the  situation  arises,  the SWC register could easily  be  increased. 
The PWC register, on the  other hand, is seven  bits  since  the bulk 
storage unit may want to  transfer  as  many  as  128  words quite  often. 
In fact  the  word count section of the  control  words could be  increased 
to allow  for more  words  to  be  transferred  from  the  bulk  storage  with 
one set of control  words;  however, all the  other  bits  in  the  control 
words  have  been put  to good use. If in  the  future  less  than 64 serial  

265 



devices are needed on a single 1/0 unit  another  bit could be  made 
available  for  the  word count. However, this  problem is actually 
alleviated by the use of the  chain  bit.  This  bit  makes transfers of 
blocks of words  longer  than  128  words  relatively  simple.  In  fact one 
of the  main  reasons  for  adding  the  chain  bit  to  the  control  word  instead 
of making  the  word count eight  bits  was  to  enable  long  word block trans- 
fers  without the  need  for  processor  intervention. 

21:36 Memory Address:  These  bits  provide  the  initial  memory  address  for 
reading o r  writing.  They are loaded  into either the SWC o r  PWC. 

A third I/O control  word  will  be  required  for 1/0 programs  working with the 
bulk storage unit. This word will  provide  eighteen  more  address  bits  for  the bulk 
storage location. This word  will  be  picked up  by the 1/0 unit  from  the first memory 
location  given  in  the PMAC. A total of twenty-five address  bits  are then  available  for 
bulk storage  addressing. (Seven bits  were obtained from  the  device  name  locations  in 
control  word  one.) If more  bits are necessary  for  addressing this unit,  a  fourth 
control  word would have  to  be obtained. A twenty-five-bit address would be  sufficient 
for a bulk storage of approximately  6  x108  bits  stored  as  18-bit  words. A number of 
108 bit  bulk  storage units are  discussed in Appendix II. 

6.1.3.6 1/0 Device  Interface and Word Format 

The  interfaces  to  the  devices and the  control  words  for  the  devices cannot be 
explicitly  specified  until  the  devices  themselves  have  been  designed. As a result this 
section  will only give a discussion of =e of the  lines ard bits  that may be  necessary 
on the  interfaces  and in the  control  words. 

Since  the access of I/O variables is program  controlled,  the 1/0 unit  should  send 
requests  to  the  devices.  The  requests  will  cause  the  conditioner  to  immediately  begin 
receiving  information  over a two-way serial  line.  There  should  be no  need for  the 
1/0 unit to check  and see if the  device is busy  since it would probably  be  a  programming 
error   to   use a device  twice in succession without  allowing it sufficient  time  to  complete 
its f i rs t  operation. A s  a result, if an 1/0 program is interrupted  while  a  device is 
busy, the  present  operation  should  be  halted  immediately  and  the  present  data  or con- 
t rol  word will have to  be obtained  again  when  the  interrupted  program is restarted. 
This  means that the  devices  should  receive  a  halt  line  from  the 1/0 units.  In  order  to 
enable  loading of I/O variables  from  the ASR and BR into  the  devices,  each 1/0 unit 
could send  the  bulk  storage  and  each  conditioner  separate "load" lines. A l fO" to "1" 
transition on one of these lines would then  cause  the  appropriate  device, bulk storage, 
o r  conditioner,  to  receive a word o r  a  bit.  Similar  lines could be run from  each 
conditioner and from  the  bulk  storage  to  the 1/0 unit.  These  lines would enable  loading 
of data  from  the  devices  into  the 1/0 unit. 

In addition to  the  above  lines,  each  conditioner  and  device  may  have  a  number of 
separate  lines  to  the 1/0 unit for  failure notification.  These  lines would set the C/S 
flip-flop and conditioner  device register. The  existence of these lines depends on 
whether o r  not  the  conditioners  and  sensors  have  some  self-checking  hardware. If 
they are not  able  to  check  themselves,  they  will  be checked under  program  control. 
In this latter  case  there would be  no  need  for  failure  notification lines. 

At  the  present  time it appears  that  the  best way for  the computation  system  to 
handle certain devices  and  functions is to  have  them set a request  flip  flop in the 1/0 
unit when they  require  servicing.  (This of course requires lines  from  the  devices  to 

266 



each 1/0 unit.)  These  flip  flops would be periodically  monitored by an executive  pro- 
gram in order  to  see if servicing  was  required. A good example of such a device  may 
be an astronaut input/output  console. A request flip-flop, C, is  shown  in Figure 6-19 
for  this  device.  This  console will probably  be  included  to  enable  the  astronauts  to do 
some  programing  and  to  request  a  variety of outputs  from  the  computation  system. 
Another  example is the use of a  failure flip-flop a s  shown in Figure 6-19. This  flip- 
flop would be set any time  one of the  failure  status  word  flip  flops is set. After noting 
that  the F flip  flop  was one the  executive would reset the  flip  flop  and then read  the 
failure  status  word  in  order  to  determine  the  proper  corrective action. 

An example of some of the  contents of a control  word  for  a  conditioner is given 
below: 

bits: 0 1: 4 5 6 

Data Write Name 
Control/ Discrete Read/ Device 

Bits - 
0 Control/Data:  This  specifies  that  the following word is a  control  word 

or  a data  word. 

1 :4 Device Name: This gives the  device  name on the conditioner  that is 
receiving  the  control  word. 

5 Read/Write:  This  requests  a  read  (from  memory) or  write (to  memory) 
operation  from  the  specified  .device. 

6  Discrete:  This  notifies  the  conditioner  that  the  read/write  command is 
for a discrete word. 

The  control  word  for  the bulk storage is also not specified at  this  time,  but  the 
following example is probably  accurate: 

Word 1 

Word 2 

Bits 

1 

- 

2 

3:9 

10:16, 
19:36 

bits: 

bits: 19: 36 
IBulk Address I 

Read/Write:  This  requests a read  (from  main  memory) or  write (to 
memory)  operation. 

Discrete:  This  tells if the  next  control  word is a  discrete  for  a  read. 
For a write operation  with  the  discrete  bit on, control  word two is 
ignored  and  the bulk memory  sends a status  word  back  to  the I/O unit. 

Word Count: This is the  word count from  the 1/0 unit's PWC register. 

Bulk Address:  This is the address of the first bulk word  to  be trans- 
ferred  or loaded. 

267 



Note that  bits 17 and 18 of control  word  one a r e  presently  unused.  It  should  also 
be  noted  that  the  bulk  storage  will  be  connected  to  more  than one 1/0 device. A s  a 
result,  whenever it is busy  the 1/0 unit  using it will  send  all  other 1/0 units a busy 
signal  that  will  be  used  to set their  PB  flip  flops.  This  will  inhibit two 1/0 units  from 
accessing  the bulk storage  at the same  time. 

6.1.3.7 Functional  Description 

A functional  description of much of the 1/0 unit  has  been  given  throughout  this 
section;  however,  additional  clarification in certain  areas is needed. In particular, 
a  discussion of the  control flip-flop sequencing of operations, and  the  handling of 
interrupts  will  be given in this  section.  In  order  to  best  understand  this  subsection 
Figure 6-19 should be  referenced. 

As mentioned earlier,  a CIO instruction  initializes  the I/O unit for a  parallel o r  
serial  1/0 program.  The  request  for  access  to  the 1/0 unit is honored by the  scanner 
(SNR) which is then  locked on the  memory  for two requests (first and  second  control 
words). After the first control  word is transferred  to  the MR, portions of the  word 
a re  loaded  into  the  appropriate serial  or  parallel  registers and the SB and S (serial) 
flip-flops o r  the P B  and P (parallel)  flip  flops a r e  set. The S o r  P flip-flops are used 
to  tell the  control  section of the 1/0 unit which device type receives  the  next  memory 
word.  After  the  second  control  word is received and transferred by the  control 
circuitry  to  the  appropriate registers, the 1/0 unit is no longer  under  control of the 
memory.  The 1/0 control  section  next  loads  the  control word for  the  device  into  the 
ASR o r  BR and then  transmits  this  word  to  the  device.  For  a  read  operation,  a 
memory  cycle is requested by setting  the SR or  PR at  the  same  time the above opera- 
tion is taking  place. (The sequencing of operations  with  the  memory  has  been  discussed 
earlier.)  The  memory  cycle, when granted,  reads  a  data  word  from  the  location  speci- 
fied  by  the SMAC o r  PMAC. The  memory  address is placed  directly on the  memory  bus 
as shown in Figure 6-19. The  data  word is loaded into first  the MR and  then  into either 
the ASR or  BR. At  this  point  the S or P flip-flop is turned off and the  data  word  must 
be  sent  to  the  appropriate device.  The  timing  for the transmission of the  serial word 
is generated  from  the  control  section  timing  hardware.  The  number of bits  shifted is 
counted by the serial shift  counter (SSC). After the  data  word  has been transmitted  to 
the device  the SMAC or PMAC and SWC o r  PWC are  decremented. If the  word  count- 
ers have  not  reached  zero,  the  above  operation  repeats itself, starting with the  setting 
of the SR or PR  flip flop in order  to send  a  request  to  the  memory.  (There is of course 
no  need to  send  another  control  word.) If the  counters  have  reached  zero  the 1/0 pro- 
gram is terminated and the  appropriate  flip  flop,  PB o r  SB, is set to  zero. 

The  operation of the I/O unit  for  a  write  operation is very  similar  to  that  for a 
read.  However, after the  control  word  has  been  sent  to  the  device  the S o r  P flip  flop 
is turned off and  a memory  cycle is not requested. First the  specified  device  obtains 
a data word  and  sends  this  back  to  the 1/0 unit.  The  data  word is loaded by a "0" to 
"1" pulse on the  rrload''  line  from  the  devices  to  the 1/0 unit. For  transmission  over 
the serial line,  the 1/0 unit  control  section  counts  the  load  pulses in the SSC.  When 
the count reaches 18, the  word  transmission is complete and  a memory  cycle is 
requested by setting SR o r  PR. When the 1/0 unit  obtains  a  memory  cycle  the  address 
from  the PMAC o r  SMAC is placed on the  memory  bus and a t  the  same  time  the  data 
word to  be  sent  to the memory is transferred  from  the ASR o r  BR to  the MR. While 
the data word is being  transmitted  to  the  memory,  the SMAC or  PMAC and SWC o r  
PWC are decremented.  The  write  operation is then terminated o r  repeated,  just  like 
the  read  operation,  depending on whether  the  counters  have  reached  zero o r  not. 

268 



If the  chain  bit is set  to one by the  initial  control  word,  the  termination  procedure 
given  above for  read and write  operations is altered. When the word counter  reaches 
zero,  the  set chain  bit  flip flop causes the  control  word  flip flop (CW) to  be set to one 
(see Figure 6-19), the  word  counter  (parallel or  serial)  to  be  incremented twice, the 
SR or PR flip flop to  be set, and also  inhibits  the  resetting of SB or PB. The  next two 
memory  cycles will use  the SMAC or PMAC for a memory  address, and the  words 
received  will  be  treated as control  words.  After  receipt of the first control word the 
SWC and SMAC or PWC and PMAC a re  decremented.  After  receipt of the  second 
control  word,  the  registers are again  decremented.  The word counter  will then 
generate a zero  signal  that  will  cause  the CW flip-flop to  be  reset.  The SB or  PB 
flip-flops  will remain set and the 1/0 unit  then proceeds  in  the  same  manner as i f  a 
CIO instruction  has  just been carried out. 

One additional  point  should  be  mentioned  about  the  operation of the control flip- 
flops SR, PR, S, and P. During  the  simultaneous  operation of a  parallel and a serial 
1/0 program by a single 1/0 unit,  one program may request a memory  cycle while the 
other  program  is in  the  midst of a  memory  cycle.  For  example, SR could be one with 
a serial device  waiting for a  memory  cycle. If the bulk storage  must now also be 
supplied  a  memory  cycle,  the P flip  flop  will  be set, but P R  will  not be set. A s  soon 
as  SR returns  to  zero after its  memory  cycle, P will go to zero and PR will  be set. 
A s  a result, no data i s  lost, and the  granting of memory  cycles  will be sequenced. 

One situation has been presented  earlier  that  causes the 1/0 unit to  be  interrupted. 
This  occurs when the lockout set line  from a memory to an 1/0 unit  goes to one. This 
notifies an I/O unit that  it  is about to  become involved in a  periodic  program  execution. 
The 1/0 unit is  interrupted  immediately  unless  a  memory  cycle  is in progress, in which 
case the  cycle i s  completed first. The interrupt  is then carried out in the following 
fashion.  The  lockout register is set so that only the  interrupting  memory will  have 
access  to the 1/0 unit. A serial  status word must now be stored if the SB flip  flop is 
one. If this flip  flop is  zero, the  1/0 unit is  ready  to  receive  a  memory  request  since 
no serial 1/0 program  is in progress. The serial  status word is  stored by setting  the 
interrupt flip-flop (I) and thus  causing  the 1/0 control  circuitry  to  carry out the follow- 
ing  actions: 

1. A memory  cycle is  requested and  the primary  memory  register (PMR) and 
the  hard  wired  address a re  used for the memory  address.  The PMR is used 
for  the two most  significant  address  bits.  (The PMR can  be set by the  exec- 
utive with the CIO instruction and the device  name  bits  referring  to  a  request 
status word. ) 

2. The SMAC is then transferred  to  bit  positions 3 to 18 of the first  interrupt 
memory  location  and  the last two bits of the SWC register  are  transferred  to 
bits 1 and 2 of the  same word.  The PMR and hardwired  address  are next 
transferred  to  the SMAC. 

3.  The  second 1/0 status word as  shown below is transferred  to  the MR and the 
SMAC is decremented. 

bits: ~1:" ~ 3  4:  10  11: 12 13  14:  16  17: 18 
Cond-Device @lank) bits 1 and 2 

-~ of swc 
4. Another memory  cycle is requested and the SMAC is used for  the  memory 

address.  This is just  the  hardwired  address  minus one. 

269 



5. This  memory  cycle  loads the status word  from  the MR into the  second inter- 
rupt  memory  location.  The I and SB flip  flops are reset at the  same  time. 

The 1/0 unit is now ready  to  carry out periodic 1/0 programs. 

Note that a parallel  status word  was  not  saved  since  the  periodic  programs do not 
use  the bulk storage  unit. When the  periodic  programs  are completed,  the  executive 
must  restore  the  interrupted 1/0 program by simply giving a CIO instruction with the 
stored  status  words as the  control  words.  (These  status  words  were  purposefully 
stored with the registers in the  same  positions  as in the  original  control  words.) 
Before giving the CIO, the I/O unit name  must  be  entered in status word  one, bits 1 
and 2. 

The  failure  status word  in Figure 6-19 is  set  by a line  to  each 1/0 unit from  each 
module in  the  system as mentioned earlier.  These flip-flops also  drive  lights on the 
astronaut's  control panel.  The failure  status word is read by the  executive program 
whenever  the  request  program status word "F" flip-flop is  found  up. The  executive 
program  will then compare  the new failure  status word with the last value of this  status 
word stored in the  memory in order to determine what failure  has  occurred. The 
appropriate  reconfiguration and software checking actions  will then be taken. 

The 1/0 unit as  shown in  Figure 6-19 contains 150 flip-flops. An approximation 
for  the  gates and drivers in the  system would give a rough total  (including  flip-flops) 
FET  or device count of 5, 000. This should easily  be  implemented on a  single 150 mil 
square chip  in  the 1975 time  frame.  (This  assumes  the 5, 500 FET's  per 150 mils 
square  presented  earlier  for the processor.) 

270 





6.2 FAILURE AND  ERROR DETECTION AND CONTROL 

A preliminary  treatment of failure and e r ro r  detection and control  was  given 
in Section IV for  the  multiprocessor  organization.  The  coverage in that  section of 
this  topic  was  primarily  based on software  methods of failure and e r r o r  detection. 
Since  the multiprocessor was  selected  for  further  investigation,  hardware  methods 
of failure and e r ro r  detection were  also investigated. This  section  will  therefore 
cover both hardware and software  approaches  to  failure and e r r o r  detection.  The 
appropriate  use of the two methods or  the  'mix' of the two of them to achieve failure 
and e r ro r  detection  cannot  be  specified at this  time. One of the most  important 
parameters that  will  influence this  mix is the  probability of failures o r  errors  being 
intermittent  or  transient. If the  probability of intermittents is negligible,  then 
software  methods  may  suffice with very  little if any hardware  methods added and 
vice-versa.  It should also  be  mentioned  here  that  the  maximum  time  to  detect  a 
failure or  e r ro r  is a very  important  parameter when determining  the  proper mix. 
This  time was  defined as  5 seconds  for  the  application and this is relatively long 
enough so as  not  to  penalize  software  methods  heavily  (the  smaller  this  time,  the 
higher  the  percentage of time devoted to  software  self  test).  The two approaches 
are presented  here and further study is necessary to  determine  the  exact  mix of the 
two that  should be employed. A general  treatment of the  topic of failure and e r ro r  
detection and control is given in Appendix 3;  preliminary thoughts and various 
approaches  to  this topic a re  given in that  section. 

6.2.1  Software Methods 

Software  self tests  are of two general  types,  problem  oriented and machine 
oriented. Both programs, if  properly  designed,  that is, lmowledge of the  hardware 
failure modes  used to determine  checking  values,  will  be  equally  complete.  Problem 
oriented  programs  utilize  the  operational  program by either  testing  the  normal output 
for  reasonableness or  running a set of pre-chosen  constants. Machine oriented  self 
tes ts   are  designed  such  that  the test  problem is based on the  hardware  characteristics 
independent of the  particular  sequence they are  exercised in the  operational mode. 
Table 6-1 contains  the dominant  advantages and disadvantages of each  approach. 
Both processes have  the  common  disadvantage  that  the  percentage of lost computation 
time is directly  proportional to the  required  speed of e r r o r  detection time and the 
error  reporting is most often  the absence of a go signal  rather than a positive 
signal output. They have the  common  advantage of flexibility  as  compared to hardware 
approaches. 

Table 6-1. Software Test  Characteristics 
~~ ~ 

Problem  Oriented Advantages 
~~~ ~ ~- ~ ~~~~~~~ ~ . . ~ ~ 

1. Minimum extra storage requirements.

2. Errors affecting only that particular program being
executed are detected. Useful when computer is per-
forming a very limited set of functions.

3. Running time is short when the operational program
has a high cycle rate.

272

Table 6-1. (Cont)

Disadvantages

1. Changes each time operational program changes.
Added analysis and recertification of completeness
required.

2. Special safeguards must be implemented to inhibit
outputs when test problem is being executed. In
general, this lengthens operational program.

3. Different error response for each computer in the
system.

Machine Oriented Advantages

1. Same program used for all processors.

2. Program independent of problem changes.

3. Added property of distinguishing between operational
program mistakes and computer failures.

4. Is generally constructed for in-house use and is
available with small modifications for operational use.

Disadvantages

1. Requires additional storage capacity.

2. Execution time longer when operational program has
a high cycle rate.

- - ~ ~~ . "

Following is a listing of machine oriented software tests. These programs
can be made complete enough to provide a probability of detecting failures or e r ro r s
very high, approaching loo%, given that these a re solid failures o r errors. These
tests may or may not detect intermittents or transients, of course as the tests
are run at a higher rate and take proportionately larger amounts of computation
time away from the operational program, more intermittents or transients will be
detected.

6 . 2 . 1 . 1 Memory Check Sum

The memory check sum routine simply adds the contents of fixed storage
locations (instructions and constants) without regard to overflow and compares the
result with the prestored correct response. The function of the test is to check for
potential malfunctions in the computer memory and processor.

The check sum routine could be written to add all of fixed storage at one time.
This method was not chosen because of programming inefficiencies which would result
from having to keep track of which blocks in memory contain fixed information and
which contain variable information. Instead a check sum routine would be built into

273

each major programming segment and would be performed at the outset of the segment.
Parameters such as the starting address, number of locations to be added, and
expected check sum response a re included as part of the program segment package.
Initialization, execution of the check sum, and checking of the response would be
handled by a utility routine. With indexing and the appropriate index test, decrement,
and transfer instruction the check sum execution can be handled by a two instruction
loop.

6.2. 1.2 Arithmetic Section Functional Test

This test checks the performance of the arithmetic section logic circuits of the
processor. No special test instructions are envisioned, therefore, no additional
hardware would be designed into the system to perform this test. Patterns for
exhaustively testing the arithmetic logic are prestored in memory and under pro-
gram control act as stimuli to the logic. The responses of the logic are compared
with prestored correct responses to determine the status.

Based on previous experience in writing this type of test, it is estimated that
for this application the test would require 425 instructions and 7 5 constants and
temporary storage locations. For a 4 psec add time the test would run for about
2 msec. The degree of completeness, o r the ability of this test to detect arithmetic
section e r ro r s is expected to be high, (about 99 percent). Of course, proving this
would require a thorough analysis which involves determining likely component
failure modes and the ability of the test to detect the effects produced by the compo-
nent failure modes. Such an effort would be in order i f further design were performed
on the multiprocessor organization.

The test is performed at a periodic rate. Its frequency would be adjusted to
insure that the worst case reconfiguration time of 5 seconds during critical phases
would be met.

6.2.1.3 Program Control Test

This test checks the ability of the computer to execute instructions in a
legitimate operational sequence. Computer malfunctions which produce affects
that are described by saying the computer is hung-up within an instruction, within a
loop of random size, or wandering aimlessly through instruction sequences, wmld
be detected. Malfunctions producing such effects can originate in the control logic
of the processor, the memory, the clocking system, or the power supply.

Efficient implementation of this test requires insertion of built-in test
equipment (BITE) to mechanize a timing device. A s an example, a digital timer
would operate as follows: Under program control, a periodic square wave is set up
and acts as input to the timer which consists of counters and associated logic.
Tolerances are set on the duration of the ,'high'' and r r l o ~ " portions of each cycle of
the square wave and on the period. The inability of the 'computer to provide this
prescribed square wave, which would occur in the presence of a control error, would
be detected by wired-in logic associated with the counter and result in the setting
of an e r ro r flip flop indicating a computer failure. The period of the square wave
and the associated tolerances would be determined to satisfy the worst case recon-
figuration time requirement of 5 seconds.

274

From the programming point of view, periodically, an instruction has to be
executed to effect the high portion of the wave, and a prescribed time later another
instruction is executed to effect the low portion.

In the multiprocessor configuration the requirement has been established to
isolate errors to the processor or memory. The above tests provide this capability
only to a limited extent. For example, a processor arithmetic error can be isolated
to the processor by executing the arithmetic functional test twice, one from each of
two memories. Normally the test would be executed the second time only upon
failure of the first test. Similarly, a memory failure is isolable by a check sum
where the memory is an operand source, not an instruction source, for two
processors. Where a memory is an instruction source at the time of its failure
the program control test will detect the error, as it will if the processor contains a
control error.

The approach chosen to isolate e r ro r s between memories and pmcessors (and
between processors and I/O units too) generally takes advantage of the fact that
isolation need not be instantaneous and that the space crew is available to perform
procedures as required for isolation subsequent to e r ro r detection. The penalty of
this approach is that more equipment than otherwise necessary may be placed in a
"down" condition at the time an e r r o r is detected and, of course, also that more crew
participation is required. However, an analysis of the mission success and availability
requirements shows that those requirements can be adequately met with this approach.

6.2.1.4 Input Signal Tests

Tests performed on input signals can detect failures due to errors in sensors,
in data transmission, in input signal conditioning circuitry, or in transferring the
signal through the input section of the computer to either the processor section or
the memory. Where tests are performed during normal operation of the system
(on-line) the stimuli are not "canned" as they are in the case of arithmetic section
tests since the sensors are not interrupted to provide prescribed input signals. In
place of prescribed sensor values for testing purposes, the validity of these signals
can be tested within the arithmetic section of the processor by a combination of the
following techniques: reasonableness tests, dual redundant inputs, and BITE.
Reasonableness tests use criteria such as the expected range and/or rate of the input
parameter for error detection. Redundant inputs allow the disagreement between the
inputs to provide e r r o r detection. BITE in the form of input conditioner built-in
stimuli under program control provides a backup to reasonableness tests and
redundancy both for enhancing the e r ro r detection capability and for error isolation.
The redundancy technique is the least desirable due to reliability and power considera-
tions and would be used selectively, only if a study of the proposed reasonableness
tests, BITE, and the criticality of the input signal indicate it is necessary.

Given that e r ro r s will be detected by the above mentioned techniques, the
isolation problem is to determine if the input device, 1/0 conditioner, or computer
is the error source. It is assumed that the input device cannot monitor its own
status completely and will require computer participation for its status determina-
tion. It is further assumed that i f digital transmission errors represent a significant
problem, it would be handled by simple parity checking. A description of the
detection and isolation process follows.

275

Included in the program segment requesting an input is the test required to
verify it. If the input is acceptable normal operation continues. If the input is found
to be in error, the e r ro r status is recorded in an assigned bit position of a status
word in memory. (Assume one status word is reserved for each 1/0 conditioner
thereby allowing reference in this description to "I/O conditioner status words").
Normal operation continues, even in this error case, except that the previous value
of the input is used in the computations in place of the present value. At a prescribed
point in the program, the executive looks at the contents of the 1/0 conditioner words.
If this is the first input cycle in which an error has been detected, the executive
permits performance of at least one more input cycle. Note that the number of input
cycles resulting in error reports should be greater than one since there is little
likelihood that an e r ro r will occur at the start of a cycle. But, once having occurred,
if it is a solid failure, it will be present throughout all subsequent input cycles and i ts
effect will be truly represented by the 1/0 conditioner status words.

Next, consider the manner in which the 1/0 conditioner status words can be
used to isolate the failure once the failure history is complete. BPsically the process
is closely coupled to the function of the failed circuitry. If the failure occurs in
circuitry peculiar to a particular input, only that input signal will be affected and only
one input will be flagged in one of the 1/0 conditioner status words. Such e r ro r s are
either in the sensor, the transmission path between sensor and conditioner, o r in the
conditioner prior to the point where inputs are multiplexed. If failures are indicated
in more than one input signal, the failed point must be in time-shared circuitry. This
could be in the conditioner between the point where inputs a re multiplexed and its
output to the computer, the transmission path to the computer, o r in the computer
input circuitry. (An additional source could be a gross sensor error where the sensor
provides more than one input signal and all have been affected. Such specific cases
can be checked for by the executive program if the sensor cannot be depended upon to
provide such information.) In the multiprocessor more than one conditioner is tied
to the computer input unit., therefore, errors in the computer's input circuitry will
affect most input signals,

Thus, it can be seen that the number of input signals affected and their relation
to one another can provide a certain degree of isolation of the error. The degree of
unambiguous isolation is related to the failure rates of the components within the
isolable boxes that can be associated with each effect. If all inputs were bad, one
would suspect the computer input unit; if the bad inputs were associated with one
conditioner, one would suspect the conditioner first even though there is circuitry
within the computer input unit associated only with that one conditioner, etc.

From the programming point of view, each input has associated with it certain
parameters and tests employing those parameters. Tests on operational inputs are
performed at the rate the operational program requires the inputs. Test on non-
operational inputs such as those supplied by BITE test signals are performed at a
periodic rate. Detection of failures result in status notification by means of 1/0
conditioner status words in memory. The executive program interrogates these
status words each cycle. A full cycle fault isolation routine is entered after the
true failure history has been recorded in the status words. Isolation to a sensor,
an 1/0 conditioner, or the computer input unit is achieved.

276

6.2.1. 5 Output Signal Tests

In order to automatically detect e r ro r s in output signals, the loop on these sig-
nals must be closed. For this reason, all conditioner outputs are fed back to
conditioner inputs and thereby made available for checking within the arithmetic
section of the processor. A s opposed to input signal varification by means of
reasonableness tests, output signals are known at the time they are commanded.
Therefore reasonableness tests are not required. A l l comparisons can be done
digitally. Thus, for example, the output voltage derived from a digital output word
can be brought back into the conditioner, converted A to D, and the resulting digital
input value compared with the original digital output value.

The programming requirements for output signals are similar to those for inputs.
Associated with each output signal is a test which involves executing an input com-
mand for the 1/0 conditioner input channel reserved for the feedback of the output, and
a comparison of input and output digital values. Test failure results in notification by
means of 1/0 conditioner status words and a possible suspension of t h i s output
(note that for input errors past values were used while accumulating the failure
history. The same of course, cannot be done for output errors). The executive
interrogates the status words each cycle. When the failure history is completed a
full cycle fault isolation routine is entered and the error is isolated to either the
computer output unit o r to the 1/0 conditioner.

A problem that arises in the multiprocessor is the ability to isolate e r ro r s
between processors and 1/0 units. Generally, certain processor failures, and 1/0
unit failures, will result in the same conditioner status words. The isolation
ambiguity is resolved by taking advantage of the built-in flexible communication
paths between each of the processors and each of the 1/0 units. Thus, one processor
can attempt to talk to two 1/0 units, or two processors can attempt to talk to the
same 1/0 unit. The implementation of this test is dependent on the multiprocessor
configuration at the time of the failure. It was further discussed in section 4.2.3.2
dealing with reconfiguration.

6.2.2 Hardware Methods

Hardware methods of failure or error detection shall be considered in this
section, each of the modules shall be treated separately in the discussion that follows:

6 .2 .2 .1 Memory

Fault detection methods were considered for three different memorv amroaches:
coincident select semiconductor, and DRO ferrite memories, and the NDRO ferrite
memory. Each of these was considered unique enough to warrant separate treatment.

6.2.2.1.1 Coincident Select LSI Semiconductor Memory

The coincident select semiconductor memory organization described in 6. 1. 2 . 1
was investigated to determine the hardware fault detection methods that may be
employed. The memory organization is shown in Figure 6-12. The selected hardware
detection methods will be described below.

The selection of the hardware fault detection method was based on a functional
evaluation of the memory. Reference should be made to Figure 6-12in the discussion
below. Primarily this consisted of determining whether the word has-been written

277

or read correctly. The address is checked as it enters the memory module from the
processor for correct parity. The address is further checked at the output of the
address register. Since the output is connected to each of the 4K x 18 memory stacks
this then guarantees that the correct address is inputted to each stack.

It should now be noted that any failure in the addressing function from this
point on will propagate as a failure in one bit position of the selected word and will be
detected by a check on the word as it is read out of the memory. This holds true for
single failures as is being considered, of course, the probability of certain combina-
tions of multiple failures will reduce the probability of detection. The fact that only
one bit will be affected by any failures may be seen by referring to Figure 6-10 the
organization of the memory cell array. A s shown in the drawing, each cell array
contains its own row and column address decoding and selection circuitry. Each
cell array represents one bit of a word and also each cell array receives the same
address. Thus any failure in one of the arrays will affect only the corresponding bit.

It was stated that the address is checked and verified correct before it enters
each 4K stack. This is accomplished in the block labeled Input Data Control and
Address Register. A 14 bit address enters this block, it is parity checked in the
address register. Twelve of these bits then are sent to the 4K stacks. The
remaining two bits are used to control the selection of one out of the three stacks.
This selection is combined with control signals from the Data Transfer Control
block to control each of the two control lines to each 4K stack. The signals on each
of these two control lines a re monitored by a series of logic gates and checked
against the original two bits in the address register to determine that the proper
control signal was activated. This is a feedback type check on the logic decoding
and gating circuitry.

A parity check is performed at the interface to the processors (after the
1/0 blocks) to detect errors in the data read out of the memory. This parity check
will detect all single failures and certain multiple failures from the 4K stacks
through the Word Output Gating and the 1/0 blocks. The Data Transfer Control
Block will contain some checking circuitry to detect the issuance of the proper
gating control signals. However, the request scanning functions of this block can be
checked by the processor. The processor will simply check the time to have a request
for a memory cycle honored. If the time exceeds a preset amount then the memory
is declared faulty. The results of all the fault detecting circuitry a re outputted to
the line labeled "fault".

It should be noted here that a small number of logic elements can be included
in the fault detection circuitry to validate the fault detection capability. This consists
of logic for decoding three addresses to provide inputs to the detection circuitry to
simulate a bad state. The fault line may then be sampled by the processor to
determine whether it is activated. The parity checker circuits can be checked by
injecting a word into the module with incorrect parity and monitoring the "fault' line.

To summarize, the following hardware is recommended for hardware fault
detection methods on this type of memory organization: parity checking at the
interface to the processors and at the address register in the Input Data Control and
Address Register block, stack selection address decoding check by feedback in this
same block, and comparison of control signal states out of the Data Transfer and
Control block with those entering it from the processors. It is felt that this will
provide a high degree of confidence in checking the memory (close to 100%).

278

,

6.2.2.1.2 Coincident Core DRO Magnetic Memory

The organization of this memory module is the same as that shown in
Figure6-12for the semiconductor memory. The major differences are in the blocks
labeled 4K stacks. The DRO Magnetic memory consists of a different approach to
address decoding and switch selection; sense and inhibit circuitry and a data register
are also needed. These are shown in Figure 6-20, a detailed description of the 4K
stack block.

To detect failures in this memory module the same discussion as given above
to functionally checking the semiconductor memory module applies. However, the
4K stack block for this organization requires some additional fault detection circuitry.
The reason for the additional detection hardware required is basically that the bits
are not separated as in the semiconductor memory. The address decoding and switch
selection circuitry is used to select one row and one column for all bits in the stack.
Failures may occur which can cause more than one row or more than one column
being energized. As an example if one column is energized and two rows were
energized; the coincident current at two cores in each bit plane will be 3/4 Is where
Is is the normal full coincident current used to switch the cores. The cores then
may, may not o r might possibly switch with this current depending on the core stack
design. It is therefore possible to have a random effect with regards to the word
read out of the core stack with this type of failure.

Failures such as this dictated special hardware for detection. The approach
taken was to monitor the driver and sink switch selection right at the input to the
core stack. A s shown in Figure 6-20 several logic gates are used to monitor the
selection and compare this with the address sent to the 4K stack block. This checking
determines that the proper selection has been made, and that not more than one
driver or switch has been turned on. Therefore, since the address into this block
has been checked for correctness, the monitoring circuitry verifies that the correct
address has been selected. This is a feedback type check on decoding circuitry.
It should also be noted that six addresses are decoded to be used as a test on the
detecting circuitry. Whenever, these addresses are selected a fault output signal
from the memory module must be present. The detecting circuitry shown in
Figure 6-20 represents only a quadrant of a 4K stack, this circuitry is therefore
quadrupled for the entire block.

There may also be faults in this block which are not detected by this monitoring
circuitry. However, these faults will be detected by the parity check on the word
readout. Examples of these faults are those in the sense or inhibit amps o r in diodes
associated with the driver and sink switches.

Referring once again to Figure6-12this overall memory module block diagram
requires some additional hardware for fault detection in the blocks labeled 4K stacks
as discussed above; in addition to that hardware and that discussed for the semi-
conductor memory some additional circuitry has to be placed in the Word Output
Gating block. Three additional lines are inputted to this block (the read lines from
the Input Data Control and Address Register block), these lines simply control the
outputting of the proper 4K stack. This requires an extra gate for every bit line
into the Word Output Gating block. What this hardware does is it prevents two stacks
from outputting a word simultaneously. This situation could occur if one stack had
its read control and timing circuitry frozen true. As noted previously this
simultaneous output of more than one word can produce random effects that are

279

ADD
REG

TEST 2

ERROR I I

1 -
NOTE: * INDICATES FAULT DETECTION CIRCUITRY

Figure 6-20. Coincident Current Memory -4K Stack Fault Detection

difficult to detect. The circuitry described above essentially prevents the occurrence
of these faults.

6.2.2.1. 3 Linear Select -. . - NDRO ." Ferrite Memory

The organization of this memory module is given in Figure 6-18. Functionally
it is somewhat similiar to that described in Figure6-12for the other two memories.
The main difference is that a 12K stack is used in place of the three 4K stacks. This
eliminates the need for the Word Output Gating block. In addition the Input Data
Control and Address Register block is considerably simpler since it is not required
to select one out of three stacks.

With regards the fault detection problem, the stack selection address checking
circuitry in the Input Data Control and Address Register block is no longer required.
The organization of the 12K stack is shown in Figure 6-18. This block is functionally
checked by the same approach described for the Coincident Core DRO Memory 4K
stack described above. However, the exact structure of the selection circuitry
monitoring gates differs slightly from that shown in Figure 6-20.

To check the word line drivers and sink switches the output of each line is
checked at the input to the stack by the feedback approach described in para-
graph 6.2.2.1.2 to determine that the proper 1 out of 32 drivers and 1 out of 32 sinks
was selected. In addition, the selection switches for controlling the write selection
gates and the bit output gates are monitored in the same manner and compared with
the 4 bits of the address reserved for this function to determine that the proper one
out of 1 2 was selected. Parity checking is performed functionally and in the same
places as with the other two memories.

6.2.2.2 Processor

The processor module was investigated to determine the hardware methods
that would be used for hardware fault detection. Reference should be made to
paragraph 6.1 Figure 6-6 for details on the processor.

6.2.2.2.1 Data Transfers

Data transfers will be checked by testing the parity of the contents of a register
after it receives new data. For this purpose, every register whose contents a r e
thus checked will be connected to a parity bus. The parity bus will be connected to
a parity checker, which will generate an alarm when incorrect parity occurs.

The segments of an instruction are stored in several registers. The parity of
the information transferred to these registers will be checked by cohcatonating
their contents. This parity checking will provide a check on all the registers in the
processor section and the communication to and from them (U1. U2, L, MB, B1,
B2, T1--T7, OER, IR. TR, SR in Figure 6-6.

6.2.2.2.2 Adder

The operations performed by an adder will be checked and a parity bit will be
concatonated with the output operand before the result is transferred to a register.
Since some operations will be checked by parity, the output of the adder will be gated
into the parity checker.

281

Since the structure of the adder is not firm, the plans for checking the operations
are tentative. However, the following techniques a r e contemplated.

AND - The results of a logical multiplication can be obtained from the carries if
the carry inputs to the adder bits a r e set equal to zero. The carries will be
checked and their parity can be generated and concatonated with the result.
Checking parity of the result will detect e r ro r s between the generation of carries
and their transmission to the adder output. The parity bit will be generated in a
parity generator capable of calculating the Mod 2 sum of the parities of the adder
inputs and the carries. However, the parities of the adder inputs will in this
situation be treated as though they were equal to zero.

OR - The results of a logical addition can be checked by parity. If A and B a r e
two words, then

P (AB) = ZAi Bi } (mod 2)

P (AB) = EA.

P (AB) 5 E x i Bi

It can also be seen that

P (A UB) P (A E) @ P (AB) @ P (AB)

p (A) E P (AB) @ P (AB)

p (B) P (AB) @ P (AB) (mod 2)

P (A) @ P (B) @ P(AB) P (AB) @ P (E) @ 3P (AB)

P (AB) @ P (AB) @ I? (AB)

Hence

P (AUB) 3 P (A) @ P (B) @ P (AB) (mod 2)

Now P (AB) is the parity of the carries when the.carry inputs to the adder bits
a r e zero. Thus, a parity bit can be obtained from the sum of the parities of the
carries and the adder inputs.

EXCLUSIVE OR - In exclusive or, the parity of the result is equal to the sum of
the parities of the inputs. Hence, the parity bit will be generated by regarding
the carries as equal to zero.

2 82

ADDITION, SUBTRACTION - In addition o r subtraction, the parity of the result
is :

P (A f B) = P (A) + P (B) + P (C)

where C is the set of carries. The carries are checked independently of the
over-all parity check and then fed into the parity generator along with the parities
of the inputs.

The structure of an adder making use of parity checks for addition and subtraction
is shown in Figure C-3 of Appendix c.
6 . 2 . 2 . 2 . 3 Decoders

Decoders will be checked by feedback to determine whether o r not the correct
signal and only that signal is generated. The approach is identical to that shown in
Figure 6-20 used for checking the address decoding for the ferrite memory organiza-
tions. If a control memory is used for the instruction decoding and control signal
generation function the detection hardware would be organized the same as given in
Figure 6-20. It should be noted that conventional logic decoders can be checked in a
similar manner; however, some additional detection circuitry would be needed within
the logic net.

6 . 2 . 2 . 2 . 4 Gating Signals

Gating signals will be checked by parity. All the gating signals together with a
set of pseudo-gating signals are transmitted to a parity checker. Parity should be
odd at all times except for transient intervals during which parity is not examined.

One pseudo-gating signal is a parity signal. This is generated for each clock
period of each instruction. Its truth value is determined so that odd parity is
generated.

Another type of pseudo-gating signal is used in connection with a conditional
gating signal. For a given combination of instruction and bit time, a gating signal
will be generated if and only if certain conditions a r e true. For these combinations
of instruction and bit time there should be another gating signal o r pseudo-gating
signal which is generated if and only if these conditions are false. Then, regardless
of the truth value of the set of conditions, exactly one of these gating signals o r
pseudo-gating signals will be generated for that instruction and bit time. Hence the
parity of the entire set of gating signals and pseudo-gating signals will not depend on
the truth value of these conditions.

A third type of pseudo-gating signal is used to guarantee that the fan-out of any
gate includes an odd number of gating signals which would be in e r ror as a result of
an e r ro r in the output of the gate.

6. 2.2 .2 . 5 Control FliD-FloDs

The states of the control flip-flops (RM, PMR, IMR, etc., in Figure 6-6) can be
checked by parity, special redundancy and duplication.

283

The parity of a set of flip-flops is known if one of the following is known:

1. The initial parity and the number of triggerings.

2. The parity of the set of values inserted into the flip-flops.

Thus, if either of these is known, a parity check can be used to test the correct-
ness of the configuration of states.

For some sets of flip-flops parity may not be sufficient. There may be redun-
dancies which would f i x the parity even though a single fault is present. For example,
a set of flip-flops may be designed so that any one of them should be set. If the wrong
one were set, parity would remain odd. In this situation it might be possible to com-
bine the flip-flops into subsets. Then if the flip-flop which is set is in the wrong sub-
set, an e r ro r is detected. This is an example of the special use of redundancy.

A preliminary examination of the control flip-flops indicates that they may simply
be checked by parity.

6.2.2.2. 6 Counters

Counters can be checked by duplication o r by the use of unit distance counters.
Unit distance counters appear the most attractive in terms of adding little additional
hardware; however, problems are encountered since most data loaded into the counters
will be in regular binary code. This means that code conversion must be provided
either via software or hardware. Time has not permitted investigating this topic
further; therefore, a specific recommendation for checking the counters cannot be
made.

6.2.2.2. 7 Clock Pulse Stream

A fault in the clock-pulse stream is detected by the charging o r discharging of a
capacitance. A flip-pulseis triggered by every clock pulse. Its output will charge o r
discharge a capacitance in accordance with the state of the flip-flop. Hence if the
flip-flop changes state every pulse period, the resulting voltage will assume a correct
stable value. However, if the flip-flop remains in the same state, the voltage will go
to a value which is either higher o r lower than that correct stable value, depending upon
the state of the flip-flop. When the voltage goes above or below a threshold, an alarm
is generated.

6.2.2.2. 8 BITE Timing Circuitry

This hardware is used in conjunction with software checks. A s explained in that
section the instruction sequencing test is used to control the setting and resetting of a
flip flop which is used to charge a capacitance and deviation from a nominal value will
be detected by tolerance circuitry which controls the generation of an alarm.

6.2.2.2.9 Request Timer

A simple one-shot timer can be used to insure that a request signal is honored
within some period of time. This time would have to be set to the worst case permis-
sible. It should be noted that this is a check on the memory modules and the interface
therein.

284

The above discussion presented hardware detection methods for the processor.
It can be seen that the processor requires relatively more hardware than the memory
for fault detection. It is doubtful that it would be necessary to add in all the above
hardware checks when hardware and software fault detection methods a re combined.
A preliminary feeling for this indicates that: (a) parity checking on data transfers,
(c) feedback checking on decoders, (e) parity check on the state of control flip-flops,
(h) BITE Timing Circuitry, and (i) Request Timer as described above would probably
be used. The first three are relatively inexpensive and checkout a large portion of
the processor and the last two may almost be required since it is difficult to replace
them entirely with software. The remainder of the hardware detection methods would
probably be subject to extensive trade offs with software methods.

6 .2 .2 . 3 Input/Output

Hardware approaches to fault detection for the 'I/O module a re given below.
Reference should be made to Figure 6-19 for details on this module.

6 . 2 . 2 . 3 . 1 Transfers

Transfers of data words, control words and addresses between the memory and
the I/O will be checked by a parallel parity checker. The registers involved in these
transfers will be connected to a parity bus, also connected to this bus is a parity
checker.

Data transfers between the Assembly Shift Register and the Conditioners a r e
checked by parity. To check or generate parity at the Conditioner in question, a flip-
flop can be triggered once for each one transmitted in the serial channel. If necessary,
an extra bit position can be filled with a zero to make even the total number of bit
positions. Then it would be possible to check odd parity over an even number of bit
positions. The parity check would then guarantee that at least one has been trans-
mitted. Otherwise, the parity would be even for an all zero word. It would also
guarantee that at least one zero has been transmitted. Otherwise there would be one
from each of an even number of bit positions to give even parity.

Data transfers between the Buffer Register and the Bulk Storage would also be
protected by parity checks. The thoroughness of the protection will depend upon the
final design of the Bulk Storage. These parity checks will also provide fault detection
capability for the two aforementioned registers and the MR register

6 . 2 . 2 . 3 . 2 Counters
The same comments as given for the processor apply here. No final recommen-

dation has been reached for the counters.

6 . 2 . 2 . 3 . 3 Decoders

Decoders for selecting specific conditioners o r devices a re checked by feedback
of the acknowledge signal. Each feedback signal is compared with each bit of the
register if any bit of the register is inconsistent with the feedback signal, an alarm is
generated.

285

6 .2 .3 .3 .4 Acknowledgements

Control signals transmitted between the 1/0 and another module to initiate
cooperative actions a re protected by acknowledgements. Associated with each control
signal of this type, there is a time delay. If the acknowledgement does not arrive
before the time delay expires, an alarm is initiated. If an extraneous acknowledge-
ment is received, an alarm should be generated. The control flip-flops whose states
determine the appropriateness of the acknowledgement are used to detect the extrane-
ous acknowledgement. This is accomplished as explained under "Decoders. I t

The time delay associated with an acknowledgement is designed to expire when

1. The delay in the acknowledgement is longer than the maximum delay in a
good device.

2. The delay in the acknowledgement is longer than the requesting device can
tolerate.

Situation (1) always calls for a n alarm leading to a roll-back or reconfiguration.
Situation (2) may call for such an alarm. On the other hand, it could result from
congestion o r latency.

6 .2 . 3 .3 . 5 Control Flip-Flops

Same comments as given in the processor section apply here.

286

6 . 3 EXECUTIVE PROGRAM

In the following paragraphs, flow diagrams of the major executive functions a r e
presented (Figure 6-21). Several areas are not included: the effect of 1/0 and e r ro r
detection management on the 1/0 Supervisor, message processors, and the self-test
routines.

Following is a list of the entries referenced in the diagrams; those that are not
designed a re marked with an asterisk (*): (reference should be made to Paragraph 4 .2
for general discussions on these routines).

1.

2.

3.

4.

5.

6.

f 7 .

h o .

- PIE (Program Interrupt Entry) - Entered from the RTC zero-transition
interrupt. Performs basic scheduling of periodic, request and background
programs.

- PPT (Periodic Programs Termination) - Point at which periodic programs
return to PIE when completed.

- RPT (Request Programs Termination) - Point at which request programs
return to PIE when completed.

- BPT (Background Programs Termination) - Point a t which background pro-
grams return to PIE when completed.

FSE (Fill Start Entry) - Entered from the fill function. Status is saved and
is entered to schedule background computation.

FEE (Fill Exit Entry) - Entered from the fill clock zero transition interrupt.
The background status is saved and the program issuing the fill request is
resumed.

PLE (Phased Loading Entry) - Entered as a NOW request program.
Accomplishes loading and initialization of a new program configuration
without closing down the current periodic computations until the new
periodic programs are ready to take over.

CSE (Cold Start Entry) -When a dormant processor-memory-1/0 configura-
tion is activated, control is eventually passed to this entry with RTC already
at zero. Preparations are made for entry into PLE for loading of a pro-
gram configuration.

- RLE (Request Loading Entry) - Used to load request programs on a priority
basis.

RSE (Request Select Entry) - Entry for selecting request programs for
execution with specified priorities.

RME (Request Monitor Entry) - Places selected request programs in the
request scheduling queue according to priority.

- CMP (Console Message Processor) - Reads, verifies and initiates action in
response to directives from the console.

287

r

w
E
Ir
LI
0
w

c

*13. PST (Periodic Self-Test) - Performs whatever is necessary at the RTC
frequency.

*14. CSc (Comprehensive Sei€-Check) - Complete validation of the system (hard-
ware and software). Used only from CSE and fault isolation programs.

15. FFE (Forced Fault Entry) - Creates a failure condition for the processor -
memory combination by issuing a pulse stream flip-flop signal out of
synchronization.

p{ "16. (READ) - Used to transmit information from Mass storage to main memory.

A data base is assumed in these designs. Table 6-2 lists these parameters with
cross-references to the entries which use them:

Table 6-2. Executive Data Base Table

Parameter Description

-~ . .,. . - ~

~~~ ~~ ~ 

checksum  value,  check start  
point & check  segment length 

L SP(i) interrupt  register  save  area 
"___ -. . . .- - - 

Entry for ith request  program  in  the 
R(i)consists Of Request  Scheduling Table  (R-table) 

L\\W aueue  Pointer a checksum  data: 
checksum  value,  check start  
point & check  segment length 

"" ". 

Entries 
~ - 

PIE,  PLE, CSE 

-. - 

PIE,  PLE, RLE 

288 



Table 6-2. (COnt) 

Parameter Entries Description 

PIE,  PLE Entry  for  ith  background  program i n  th  
Background Table (B-table) 

&\\=tion entry 

Entry  for  ith  background  program i n  the 
Background Table (B-table) 

&\YGtion  entry 

pointer  to next background 

checksum  data: 
Checksum value,  check start  
point & check  segment  length 

.. . ~ 

&\A pointer  to next background 

checksum  data: 
Checksum value,  check start  
point & check  segment  length 

.. . ~ 

PIE, FSE,  FEE Hard-wired  area  for  interrupt  system 
storage of registers 

Primary and secondary areas  for  request 
programs  status  retention 

Status  retention  area  for background 
programs 

Status  retention  area  for  fill function 
users 

Empty Storage  capacity 

" ~ ~~~ 

~ .. 

. ~ 

. ~ ~ ~ 

PIE 

PIE,  FEE 

FSE,  FEE sX 

R LE 

PIE, CSE Primary  interrupt  system clock ~~~ 

Fill function interrupt clock 

Index of periodic  program  currently in 
execution 

Index of periodic  program  last  interrupted 

Number of periodic  programs 

~. ...~ ~ ~ ~ 

~ ~~~~~ ~ ~~ 

~ 

PI E 

PI  E 

PIE 

PI E 

PI E Indices of currently executing  and last 
interrupted  request  programs 

Index of  NOW request  program 
~ ~ ~ . . ". . ~ 

PIE, RME, RLE 

PIE, RME, RLE Index of NEXT request  program 

r a' rx PIE, RME, RLE Indices of first request  programs on the 
ASAP and  non-priority  queues 

289 



Parameter Entries Description 
I I 

r* i Index of request  program being  executed PIE 
by "this" processor 

r? 
1 

Index of request  program  being  executed 1 PIE 
by "opposingTf processor 

~ ~~ ~~ 

r Index of request  program  selected  for PI E 
C execution 

b* PIE Index of background program  currently  in 
execution 

Index of next background program  to  be 
executed 

PIE 

~- 
bP 

Table 6-2. (Cont) 
I I 

- 

- 

I 
J 
J 

Next phase  number P LE 

Entry  for jth request  program i n  the 1 RME 

r V I Index of request  program  being loaded 1 RLE 

rr Number of entries in the  Request  Board RME 

290 



NEXT INTERRUPT 
RESET  RTC  FOR 

FLOP SIGNAL 
STREAM FIJP- 

- ""- 
r S T A T U S   A T   R T C  1 
I SAVED IN PROPER I INTERRUPT IS 

SAVE  REGISTERS EVEAREA - - J 

SAVE  REGISTERS 
PLACE  FC  RESIDUE MOVE Sx To SI 

FOR FILL RESTART REGISTEQS 
AND R E W A D  

MOVE S, AND MOVE SI AND MOVE  %AND 

SAVE REGISTERS SAVE  REGISTERS 

SB 
SAVE  REGISTERS 

IN  SR  IN SR* 

EXECUTE (PST) 

F z ,  Z O T R Z  r--- 
SCHEDULING '1 
L,,,-,J 

r. = O  

EXECUTE  EARLY RESET t ( i )  
1/0 AT e (i) TO f (i) 

I 

fi p* p** 

RESTORE  REGISTERS  FROM Sp (p**) 

OF P (i) : C.S. 
FORM  CHECKSUM 

((TEST) 

Figure 6-21. Executive Flow Diagrams  (Sheet 1 of 8) 

291 



I REQWST PROGRAMS SCHEDULING 
1 L " " " " -  

r* = r 

I 1 YES 

FORM CHECKSUM 
OF R ( rc)  : C.S. 

(SCHED.) 

r* = r C.S. = C (r  ) 
R c  FFE (TEST) 

Figure 6-21. Executive Flow Diagrams (Sheet 2 of 8) 

292 



"""""" 7--------- - -  1 
I REQUEST  QUEUE IS I 
I REORGANIZED WHEN THE I 
I TOP REQUEST IS SATISFIED I 
L """""_ -I 

Figure 6-21. Executive Flow Diagrams  (Sheet 3 of 8) 

293 



""""""_ 
7""" 7 

L----,,,J 
I SCHEDULING 

BACKGROUNDPROGRAMS I 

YES _____. b * = b N  

A 
NO 

bN = QB @,) 

- 

v 
FORM CHECKSUM 

RESTORE  REGISTERS 
i FROM SB 

OF B @*) : C.S. 

YES 

l"----- 1 
MOVE SI AND 

SAVE REGISTERS L" ""A 

I + 
RESTORE  REGISTERS FROM Sx 

Figure 6-21. Executive Flow Diagrams  (Sheet 4 of 8) 

294 



l T H E  FUNCTIONAL  CONFIGURATION Is RECONFIGURED 1 
""" 1,""""""- I 

"""""" 

WITHOUT  DISRUPTION OF ANY PERIODIC CALCULATIONS 

v - .- .~ 

COPY CURRENT PERIODIC PROGRAM PACK  INTO 
READ/ READ  IN THE CURRENT  REQUEST  PROGRAMS  AREA  AND 
LOAD PROFILE FOR P# ALTER THE Xp AND e ENTRIES FOR ALL P (i) P - . -. 

~ ~~ 

b 4 
" 

b 

I H FROM THE LOAD PROFILE INFORMATION 
CONSTRUCT THE NEW P (i), R (i), 
AND  B (i) TABLES AND COMPUTE 
THE LOAD POINTS FOR THE NEW 
PROGRAMS. 

COPY P (i) TABLE INTO 
CURRENT  REQUEST PRO 
AREA  AND  THEN SET BMS 
TO USE THE DUPLICATE: 

T 

READ  IN 
PROGRAM  LOAD COMPLETE THE P (i) 

PROFILE FOR EACH P (i) TABLE ENTRY 
" 

NO EAD/ READ IN THE 
P (i) PROGRAM 

I 

ADD  AN ENTRY IN A 
DUMMY  B (i) 
TABLE  FOR THE RESTART 
PROGRAM 

RESTART PROGRAM 
' 

Figure 6-21. Executive  Flow Diagrams (Sheet 5 of 8) 

295 



Q 
lo"""""""" 

I"-,--,,-,,,,,,,,J FROM  OTHERS DEPENDING ON THE MISSION PHASE 
MODULES MUST BE BLOCKED  OUT  OR UNBLOCKED I 

READ/ READ  IN THE 

\ R (i) OR B (i) PROGRAM 

1 7 1  TRANSFER TO 

Figure 6-21. Executive  Flow Diagrams (Sheet 6 of 8) 

296 



I 

* * 

CONSTRUCT DUM  MY 
P(i)  TABLE 

I PLACE 1 COUNT IN RTC 

T--------- - - -  7 
I 

I I 
L - - - - - - - - - - - - J 

' A  CONFIGURATION IS CONSTRUCTED I 
I FOR A DORMANT SET OF MODULES 

Figure 6-21. Executive Flow Diagrams  (Sheet 7 of 8) 

297 



1 
I TYES I 

I- RL E (RECONFIG.) 

LOAD PROFILE FOR r.. 

I 1 
l?=p 7 1  MPLETE  AN R (i) ENTRY 

ES MUST BE INCREASED BY: 
(1) TURNING ON DORMANT 

OR (2) REMOVAL OF UNBUEUED 
MEMORY (lF AVAILABLE) 

R 11) 
I 

MOVE REMAINING PROGRAMS AND 

Ea CONTINUOUS  MEMORY 
ALTER THE x ~ ( i )  ENTRIES TO MAKE ' 

OR (3) RiMOVA L OF R (I) ON 

OR (4) REMOVAL OF R (i) ON 
rx CHAIN 

ra CHAIN 

Figure 6-21. Executive Flow Diagrams (Sheet 8 of 8) 

298 



VI 1. SUMMARY  AND  RECOMMENDATIONS 

A summary of t h e  work  accomplished  during th i s  study  along with areas 
requiring  further  investigation is given below. Computer requirements were defined 
for what is considered as a representative  future manned space  mission,  the M a r s  
Lander  Mission.  Some  significant  points about the requirements are the widely 
varying  computer  requirements in terms of speed and storage  from phase to  phase 
and the  critical  nature of the computations  during  certain  phases  such as atmospheric 
entry.  The  requirements have a large influence on the  computer  design and there are 
many areas which could not be  covered  completely  primarily  due  to a lack of data. 
Some of the  more  important  areas are: (a) the interface between the computer and 
the  sensors,  information is lacking as to the  nature of the  signals  expected, (b) pre- 
cision  requirements  for  various  computations  needs  to  be  firmly defined, also  the 
question as to  whether  floating point is needed for  some navigation and guidance 
functions should be decided, (c) the structure of a reliable bulk storage unit for  the 
time  eriod of interest should  be  investigated and (d) the  investigation and  design of ultra 
r e l i a h t y  switch  networks. Any future  requirements  studies should  take into  account the 
above  points. 

Three  types of multiprocessing  organizations  were  presented.  These  organiza- 
tions  span technology that may be  considered as  state of the art to that expected  over 
the next 10 years. The modular  multiprocessor  organization  was  selected  for a 
detailed  investigation.  All t he  functional features of the memory,  processor, and 
Input/Output modules have been  designed.  The  next step in the  design of the  computer 
would be a detailed  logic  design and layout. The  modular  multiprocessor was shown 
to  meet  the  requirements of t h i s  mission  quite  efficiently.  Its  organization  permits 
t h e  turning on and off  of any module and thereby  providing a good match  to t h e  diverse 
computational requirements  from  phase  to  phase. It also  provides the capability for 
a significant  enhancement in probability of success and availability as was shown in 
the  simulation  results.  This is due to the reconfiguration  around failures  at  the 
module level and the  increase in reliability  due  to  turning  modules off given that 
dormant failure rates are lower  than  operating  failure rates, 

The  simulation pointed out two points that need fu r the r  investigation: (a) the 
relative  difference between dormant and operating  failure  rates  needs  to  be  deter- 
mined, this factor  has a profound effect on the  computer  design and (b)  monte  Carlo 
methods  become  increasingly  expensive  in terms of computer  time as the organiza- 
tional complexlty is increased and analytical methods  should be developed for complex 
missions  such as this one. 

With regards  to  the functional  design of the three organizations,  the  distributed 
processor is the one which needs  more work in all areas (logic  design, failure 
analysis,  software)  to  further assess its advantages and disadvantages.  The area of 
the  modular  multiprocessor which should receive fur ther  study is the input/output 
software  mechanization and in  particular  the  software  utilization of 1/0 failure 
detection  information. 

Software and hardware  failure  detection  methods have been  investigated, it is 
felt that t h e  relative importance of intermittent  type  failures is an area in  need of 
immediate  attention to  determine  the  relative  use of these two  methods for  failure 
detection. 

299 





APPEND IX A.  DETA I LED COMPUTER REQU I REMENTS 

This appendix contains a tabulation of computer  requirements on a per  phase 
basis  (Table A-1). The  requirements  for  each  phase are given for  each of the four 
basic functions:  (a) Navigation and Guidance, (b) Tele-Communications, (c)  Experi- 
ment  Data  Processing, and (d)  System Checkout. These  four functions are fu r the r  
broken down into  sub  functions for  each phase.  Section II, 2.8 contained a discussion 
of each of these sub  functions. It should be noted that the requirements are given as 
sub  totals  for  each of the  four  functions  for  each  phase and also as totals  for  each 
phase. 

In addition a "Cumulative  Total" is tabulated  for  each  phase.  This  cumulative 
total is the total  storage  that would be  required  in t h e  computer if the  programs  for 
each  phase were commulatively stored in the  computer ( t h i s  is the  case if a bulk storage 
unit is not used).  The storage  requirements are not directly added on to  each  other 
from  phase  to  phase  since many of the  functions are identical in more than one phase; 
as an  example the  tele-communications  functions of the  trans-Mars  coast and trajectory 
correction are identical.  The  storage  requirement  tabulated a s  cumulative would 
exist in a computer that is not reloaded with new programs  from  phase  to  phase. 

It should be noted that  these  requirements  were  derived  before an 18 bit 
computer with  indexing and other  features  previously  discussed was decided upon. 
Therefore, these requirements do not take  into  account word  length  required in 
arriving at storage and speed,  that is, no half length o r  double  length considerations 
a re  made and no special  features  such as indexing, indirecting,  or  multiple  accumula- 
tors are assumed  available.  The same  general  discussion as given in Section II, 2.9 
holds true  for  deriving  the  computer  requirements and for overhead  requirements 
(executive, I/O, etc. ). 

Figure A-1 contains the requirements in  a graphic  form. The storage is 
plotted as  a solid  line and a  dotted  line;  the  dotted  line is the  cumulative  storage plot. 

Table A-1. Computer  Requirements 

1. 

1.1 

1 . 1 . 1  

1.1.2 

Requirements 

Phase 1 Atmos- 
pheric  Ascent 
Navigation and 
Guidance 
Process  Acceler- 
ometer Outputs 
Navigation 
Computation 

Subtotal 

I Storage 
Instr Const Var 

(Words) 

- " 

320 26 3 

290  16  9 

610  42  12 

~ "_ ~ " . ~~ 

301 

Speed 
Short Long 

:Operations/second: 

24 0 37 

488  29 

728  66 

Word 
,ength 
Bits 



Requirements 

1.2 

1.4 

2. 

2.1 

2.1.1 

2.1.2 

2.1.3 

2.1.4 

2.2 

2.4 

3 .  

3 . 1  

3 .1 .1  

3.1.2 

3.1.3 

3.1.4 

Telecommunications 
Status  Monitoring 

Total 

Earth  Orbital 
Coast 
Navigation and 
Guidance 
Attitude  Reference 
Landmark  Tracker 
Operation 
Orbft  Determina- 
tion Computation 
Navigation 
Computation 

Subtotal 
Telecommunications 
Status Monitoring 

Total 
Cummulative  Total 
Trans Mars Injectior 
Navigation and 
Guidance 
Process  Acceler- 
ometer Outputs 
Navigation 
Computation 
Required  Velocity 
Computation 
Velocity to  be 
Gained Steering 

Subtotal 

Storage 
Instr Const  Val 

(Word@ 

800 50 50 

1000 300 60 

241 0 392 122 

1756 422 183 

517 313 8 

1478 88 230 

57 3 18 39 

4324  841  460 

Same as 1.2 

1 . 4  plus 1000  200 
3000 

9124  2191 770 

9734  2233  782 

m e  as 1.1.1 

ame as 1.1.2 

1000 

200 

1810 

40  60 

10  20 

92  92 

Speed 

(Operations/second 
Short Long 

1000 

1000 

2728 

11520 

9483 

7576 

493 

29072 

1000 

5000 

35072 

480 

97 6 

10000 

3000 

14456 

2 00 

120 

3 86 

3320 

3000 

433 

47 

6800 

200 

1000 

8000 

74 

58 

3000 

7 00 

3832 

Word 
Lengtt 
Bits 

30 

30 

30 

30  

302 



Table A-1. (Cont) 

I 

L 

4 

4 

4 

4 

4 

4 

4 

4 
4 
4 

4 

5 

5 

5 

5 

- 

Requirements 

I. 2 
I. 4 

!. 
i. 1 

:. 1.1 
:. 1.2 
:. 1.3 

:. 2 

'. 3 

:. 3.1 
.3.2 
.3.3 

.4 

.1 

.l. 1 

. 1.2 

Telecommunication 
Status Monitoring 

Total 
Cummulative  Total 
Trans Mars Coast 
Navigation and 
Guidance 
Attitude Reference 
Navigation 
Computation 
Velocity to  be 
Gained (Monitor) 

Subtotal 
Telecommunication1 

Scientific 
Experiments 
Data Compression 
Sequencing 
Pointing and 
Control 

Subtotal 
Status Monitoring 

Total 
Cummulative  Total 
Trajectory 
Correction 
Navigation and 
Guidance 
Process  Acceler- 
ometer Outputs 
Navigation 
Computation 

Storage 
- . . 

Instr Const Var 
~~ . 

(Words) 

Same as 1.2 
1.4 plus 
1000 
4610 
11934 

Same as 2.1.1 
1000 

1500 

4256 
1.2 plus 
2000 

1121 

750 
500 

2371 
Same as 2.4 

300 60 

742 262 
2583 922 

30 50 

25 60 

477  293 
100 1000 

414 2009 
125 150 
50 25 

589  2184 

13427  2516  3727 

18805  3327  4216 

Same as 1.1.1 

Same as 1.1.2 

Speed 
Short Long 

[Operations/seconc 

1000 
3000 

18456 

11520 
3000 

2500 

17020 

5000 

6591 
200 
1000 

7791 
5000 
34811 

48 0 

976 

200 
350 

43  82 

3320 
1000 

900 

522 0 

500 

525 
2 

400 

927 
1000 
7647 

74 

58 

Word 
Lengtl! 

Bits 

12 
16 
16 

303 



Table A-1. (Cont) 

Requirements 

5.1.3 

5.1.4 

5.2 
5.3 

5.4 

6. 

6.1 

6.1.1 

6.1.2 

6.2 

6.3 

6.4 

’. 1 

’. 1.1 

’. 1.2 

I. 1.3 

Velocity to  be 
Gained 
Velocity  to  be 
Gained Steering 

Subtotal 
Telecommunications 
Scientific 
Experiments 
Status Monitoring 

Total 
Cummulative  Total 

spin UP 
Navigation and 
Guidance 
Angular  Velocity 
to  be Gained 
Steering 

Subtotal 
Telecommunications 
Scientific 
Experiments 
Status  Monitoring 

Total 
Cummulative  Total 
Spin Cruise 
Navigation and 
Guidance 
Attitude Reference 
Navigation 
Computation 
Velocity to  be 
Gained (Monitor) 

Storage 
~ 

Instr Const Var 

iame as 4.1.3 

jame as 3.1.4 

2310 77 
Same as 4.2 
Same as 4.3 

Same as 3.4 
9481 1416 
18805 3327 

500 40 

400 30 
900 70 

Same as 4.2 
Same as 4.3 

Same as 3.4 

807  1  1359 

92 

3446 
4216 

50 

40 
90 

3444 

19705  3397  4306 

ame as 2.1.1 
m e  as 4.1.2 

%me as 4.1.3 

Speed 
Short Long 

30000 

3 000 

34456 
5000 

7791 

3 000 
50247 

5000 

10000 
15000 

5000 
7791 

3000 

30791 

11520 

3000 

2500 

10000 

7 00 

10832 

500 

927 

3  50 
12609 

1500 

4000 

5500 

500 
927 

350 
7277 

3320 
1000 

900 

- 

1 
” 

” 

A 

- 
Wore 
;en@ 

Bit1 
- 

304 



Table A-1. (Cont) 
.. 

Requirements 

7.1.4 

7.2 
7.3 

7.4 

3. 

3. 

3.1 

3.1.1 

j. 1.2 

). 1.3 

). 1.4 

3.2 
9.3 

3.4 

Angular Velocity 
to be  Gained 
(Monitor) 

Subtotal 
Telecommunication 
Scientific 
Experiments 
Status  Monitoring 

Total 
Cummulative Total 

De Spin 
(Same as 6. Spin 

Mars Approach 
Correction 
Navigation and 
Guidance 
Process  Acceler- 
ometer Outputs 
Navigation 
Computation 
Velocity to  be 
Gained 
Steering 

UP) 

Subtotal 
Telecommunication; 
Scientific 
Experiments 
Status Monitoring 

Total 
Cummulative  Total 

-T 
T 

Same as 6.1.1 

47 56  517 
Same as 4.2 
Same as 4.3 

Same as 2.4 
13927 2556 
19705 3397 
8071 1359 
19705 3397 

Same a s  1.1.1 

Same as 1.1.2 

4.1.3 plus 
3 00 

Same as 3.1.4 
261.0 

Same as 4.2 
Same as 4.3 

15 

92 

Same as 3.4 

9781 143  1 
20005 3412 

343 

3  837 
43 06 

3444 
43 06 

5 

97 

3451 
4311 

Speed 
Short Long 

1000 

18020 
5000 
7791 

5000 
35811 

30791 

480 

97 6 

30000 

3000 
34456 
5000 
7791 

3000 
50247 

300 

5520 
500 
927 

1000 
7 947 

7277 

74 

58 

10000 

7 00 
10832 
500 
927 

350 
12609 

Word 
Lengtf 

Bits 



Requirements 

10. 

10.1 

10.2 

10.3 

10.4 

11. 

11.1 

11.1.1 

11.1.2 

11.1.3 
11.1.4 

11.2 

11.3 

11.4 

12. 

12.1 

12.2 

Aerobraking 
Navigation and 
Guidance 
Entry  Constraint 
and Steering 
Telecommunicationt 

Scientific 
Experiments 
Status Monitoring 

Total 
Cummulative  Total 
Mars Orbit 
Injection 
Navigation and 
Guidance 
Process  Acceler- 
ometer Outputs 
Navigation 
Computation 
Required  Velocity 
Steering 

Subtotal 
Telecommunications 
Scientific 
Experiments 
Status  Monitoring 

Total 
Cummulative Total 
Mars Orbital 
Coast 
Navigation and 
Guidance 
Telecommunications 

Table A-1. (Cont) 

Storage 
~~ 

Instr Const Var 

3 000 200 200 

Same as 4.2 
Same as 4.3 

Same as 3 .4  

10171  1539 3554 
23005  3612  4511 

Same as 1.1.1 

Same as 1.1.2 

400 
same as 3.1.4 

1210 

Same as  4.2 
Same as 4.3 

Same as 3.4 

20 15 

72 47 

83  81  1411  3401 
23405  3632  4526 

Same as 2.1 

4.2 plus 200  1000 
1500 

Speed 
~ 

Short 

12000 

5000 

7791 

3 000 
27791 

480 

976 

7000 
3000 

11456 

5000 
7791 

3000 

27247 

22800 

10000 

Long 
"" ~ . 

3000 

500 

927 

350 
4777 

74 

58 

2000 

700 
2832 

500 

927 

350 

46  09 

4516 

1000 

~~ 

Word 
kngtl 

Bits 

30 

306 



I' 

Table .A-l. (Cont) 
. - 

Requirements 

12.3 

12.3.1 

12.3.2 
12.3.3 

12.4 

13. 

13.1 

13.1.1 

13.1.2 

13.1.3 
13.1.4 

13.2 
13.3 

13.4 

14. 

15. 

Scientific 
Experiments 
Data Compression 

Sequencing 
Pointing 

Subtotal 
Status  Monitoring 

Total 
Cummulative Total 
Trans  Earth 
Injection 
Navigation and 
Guidance 
Process  Acceler- 
ometer  Outputs 
Navigation 
Computation 
Required Velocity 
Steering 

Subtotal 
Telecommunication 
Scientific 
Experiments 
Status  Monitoring 

Total 
Cummulative  Total 
Trans  Earth Coast 
Same as 4. 
Trajectory 
Correction 
(Same as 5.) 

Storage 
Instr Const Va: 

4.3 plus 445 154( 
500 
200  50 51 
1000 50 51 
407  1 1134 3831 

Same as 2.4 
16695 3625 660( 
26605 4377 717: 

Same as  1.1.1 

Same as  1.1.2 

7 00 30 2! 

300 15 l! 

1610 87 5: 
Same as  4.2 
Same as 4.3 

Same as  3.4 
8781  1426 340t 

27605 4422 7212 

Speed 
Short Long 

194840 

500 
10000 

205340 
5000 

243140 

480 

976 

10000 

4000 
15456 
5000 
7791 

3000 
31247 

36120 

5 
4000 
40125 
1000 
46641 

74 

58 

3000 
1000 
4132 
500 
927 

350 
59  09 

Word 
.engtt 
Bits 

12 

16 
16 

307 



C6-1476.10/33 

Table A-1. (Cont) 

. Requirements 

16. spin UP 

(Same as 6.) 
17. Spin Cruise 

(Same as 7. ) 

18. De Spin 

(Same as 8. ) 

Correction 
19. Earth Approach 

19.1 Process  Acceler- 
ometer Outputs 

19.1.2 Navigation 

19.1.3 Velocity to  be 

19.1.4 Steering 

Computation 

Gained 

19.2 

19.4 

20. 
20.1 

20. 2 

20.4 

Subtotal 
Telecommunicatior 
Status  Monitoring 

Total 
Cummulative Total 
Earth  Re-entry 
Re-entry Energy 
Management and 
Guidance 

Subtotal 
Telecommunication 
Status  Monitoring 

Total 
Cummulative Total 

Storage 
Instr Const Var 

Same as 1.1.1 

Same as 1.1.2 

9.1.3 plus 
600 

Same as 3.1.4 
3210 

Same as 1.2 
Same as 3.4 

6010 

25 20 

117  117 

767  287 
28205  4447  7232 

10.1 plus 250  250 
2300 

53 00 450 450 
Same as 1.2 
Same as 3.4 

8100  1100 620 

30505  4697  7482 

308 

Speed 
Short Long 

480 

976 

45000 

3 000 
49456 
1000 

3000 

53456 

183 00 

1000 
3000 

22300 

74 

58 

15000 

7 00 
15832 
200 

3 50 
16382 

446 0 

200 
350 

5010 

- 
Wore 
Lengt 
Bits 



n 383.1 

100 - 
88.1 88.1 

80 - 
- - 

69.1 - 
60  - 59. I 57.8 - 52.6 - 52.6 - - - 

49.0 
67.8 

40 - 42.1 41.1 - 
31.6 - 

20 - 
3.9 

0 -  

.” .. 
l U E . 0  - 

I 
a 
0 

w 
< 
0” 
6 

Figure A-1. Computer Requirements per Phase 





APPENDIX B. MASS STORAGE CONS I DERATl ONS 

B1 INTRODUCTION 

There  exists  the  need  for providing a mass storage  medium in the  computer 
system.  This is dictated  by  the  fact  that it is desired  to  store  the  mission  programs 
in some device  assuring  the  integrity of approximately 106 bits. In addition, it is 
desired  to  provide a data buffer between sensors and the  computer.  This is used  to 
&ore  data  in bulk  quantity prior  to  processing  either  due to the  desirability  for  burst 
processing on  accumulated  sensor  data  such as video scans and/or  buffer  bursts or 
hi-rates  from  sensors.  The  total  storage  required is expected to  be on the  order of 
108 bits  for  data and mission  programs with the  majority of this  for  sensor  data.  The 
discussion  in  this  section  will  present technology trends  that  may  be  applicable  to  the 
mass  storage medium required  for  the manned Mars  mission. 

Much of the  difficulty of selecting an optimum  approach  to a 108 bit  memory 
system  arised  because  no  non-mechanical  systems  that  large have been  constructed. 
The  general  undesirability of massive moving elements in  a spaceborne  system, the  
maintenance  requirements, and the  dependence on a mechanical  determination of data 
rate are  factors which have eliminated  electro-mechanical  systems  such as tape and 
drum  storage  from  consideration. 

Several  groups within the  industry  have  been funded under  government  contracts 
for  the development of 108 bit memory  systems. While  none of the  systems have yet 
been  completed,  the  development of portions of such  systems have been  carried  to  the 
point where  full-system  problems are illuminated and reasonable  predictions of sys- 
tem  characteristics  can  be made. 

The  three  outstanding  approaches  to mass  storage include assemblies of mag- 
netic  plated wire arrays,  stacks of planes of toroidal  cores etched  from  thin  permalloy 
sheets, and an  assembly of long flat  strips of glass coated with permalloy and with 
copper. 

All of these  approaches t o  mass  memory  utilize a random-access word organized 
configuration.  The  application  herein  considered could use a different  type of organi- 
zation in which random access is provided  to  blocks of information with serial  access 
to  the  bits  constituting  the  block (BORAM). Non-mechanical versions of this  type of 
memory are currently  under  development; however, their  progress and  application to 
mass  memory is several  years behind the  previously  mentioned  systems. 

Some details of these  various  approaches  are  described in  the following 
paragraphs. 

BL 1 Plated  Wire  Memory 

The  fundamental  operation of a plated wire  memory cell was  described in sec- 
tions 3 and 6. A recent  study  contract, funded by the Rome Air Development Center, 
resulted in a proposed  108  bit  memory  design  (characteristics of the  system have been 
simulated) with the following characteristics:  (Reference 26) 

The  system  will  be  organized as ten 107 bit modules.  Each  ten-million-bit  mem- 
ory  plane  constituting a module  contains 2048 word-line  solenoids  encircling 4608 
plated  wires  (plus a small  number of common  mode  cancelling wires).  The  modules 

311 



will be organized with 64 words of 72 bits on each  word  line, and each  time all the bits 
in  such a word  group  line are interrogated, only the bits belonging to  the  selected  word 
are routed by a set of gates  to  the  sense  amplifiers.  This  mode of operation is possi- 
ble  because of the  non-destructive  characteristics of the  interrogation,  thus  making 
restoration of information in interrogated  bits  unnecessary.  This  property is very 
important  because it allows a memory  configuration  to  be  chosen which leads  to a 
minimal  number of bit and word drivers and sense  amplifiers.  (The  organization 
could easily  be changed to 256 words of 18 bits or  other  combinations whose product 
totals 4608 bits. ) 

The  design  word rate for  readb-g and writing  will  be  100  kilocycles  per  second 
which corresponds  to  a serial bit  rate of 7.2  megacycles  per  second. 

The output signals,  appearing on the  bit  lines a re  of the  order of 5 millivolts in 
amplitude and  70 nanoseconds wide. 

The word lines will be  spaced  at 0.045 inch centers and the  bit  lines  spaced  at 
0.015  inch centers,  resulting in a storage  density of approximately 1500 bits per 
square inch. 

Ultimately all of the  circuits in the  system are expected to  be of the  micro- 
electronic type. Near future  designs  use a combination of integrated  circuits and 
cordwood packages  using  discrete  components. 

Interconnection  will  be  made  through  multilayered  boards  with  soldering  and 
wire-wrap  technique. 

The size of the lo8  bit  memory  will  be 4 x 5 x 1. 5 feet, o r  30 cubic feet in 
volume.  The  total weight will  be  approximately 750 pounds. It is predicted  that 
future  efforts will reduce  the  volume  to 20  cubic feet. 

The power  consumption decreases with lower  speed  operation, and with an 
increasing  ratio of read  to  write  cycles. At the  7.2  megacycles  per  second  bit  rate 
the  power  consumption is estimated  to  be 7 2 . 5  watts, but decreases  to 30 watts a t  a 
0.72  megacycle  per  second  bit rate. The latter rate is entirely  acceptable  for  this 
application.  Increasing  the  number of read  cycles  per  write  cycle would effect up to a 
14% reduction  in  the  power  consumed. 

A reliability  computation  considers  the  failures  arising only from  the  joints in 
the  memory  stack and from  the bit and  word access matrices.  Assuming a transistor 
failure rate of 10-9 per hour and a failure rate of joints of 10-10 per hour,  the esti- 
mated  mean  time between failures is 7600 hours  for a 108 bit memory,  According  to 
Autonetics  experience with transistor  reliability, 10-9 per  hour  failure rate is opti- 
mistic. A more  realistic figure of 10-8 reduces  the MTBF to 3300 hours. If one 
assumes a flat pack reliability of 10-9, the  MTBF rises to 22, 000 hours. Manufac- 
turing  cost  per  bit  for  the  108  bit  system is projected  to  be  0.108  cents  per  bit in 1970. 

B1.2 Etched Permalloy  Toroid  Memory 

Rome  Air  Development  Center  has  sponsored  the  development of a mass  memory 
technique  which utilizes  toroids  etched  from  sheets of permalloy as the  storage ele- 
ments which are batch  fabricated,  along with the  associated  conductors,  into 256 x 256 
bit memory  planes.  (Reference 27) 

312 



.. . 

A coincident-current  memory  organization is used.  The  writing  system is 
conventional requiring  the coincidence of pulsed  fields on the  X and Y lines with the 
writing of a zero   o r  one  determined  by  the  presence o r  absence of the  inhibit  line  cur- 
rent  in  each plane. The  reading  operation  uses a two-frequency  selection  scheme 
which is nondestructive. In the  reading  operation only a toroid at the  intersection of 
the  selected  row and  column drive  line is energized  by  fields of both  frequencies W1 
and W2. The  core  acts as a non-linear  mixing  element  to  produce  a  sum  frequency 
component on the  sense line.  The  signal is amplified,  narrow-band  filtered, and 
phase  detected  against a reference which yields a signal whose  output polarity  depends 
on the state of the  core.  The  read  drive  frequencies of 570 kilohertz  for W1 and 930 
kilohertz  for W2 result in a sum  frequency of 1.5 megahertz.  The  result is a read 
time of 10  psec with a nominal  signal  amplitude of 50 pv rms. 

The  batch  fabricated  memory  planes  consist of flat toroids  etched  from sheet 
permalloy with the  associated  wiring  formed by  etching and plating  copper.  The top- 
ology is such  that  wires  never  cross on t h e  same plane, thus  allowing  the  wiring 
pattern  to  be  formed by  two layers of etched  copper  insulated  from  each  other and the 
permalloy  toroids, but  connected  by  means of plated  regions  through  the  interior of the 
toroids. Using highly developed  photoetching procedures  the  toroids are fabricated on 
25 mil  centers which results in 1600 bit  per sq.  inch density within t h e  plane. 

The 108 bit  system  requires 1616 planes of  256 x 256 bits  per plane.  They  will 
be assembled  into  16  block with 101  plane  per block.. The  word  length is 100 bits. 

The  design  package  has a volume of 5 cubic feet corresponding  to  a weight of 
468 pounds. Power  figures  range  from 98 watts  for a read-only  mode to a maximum 
of 179 watts  for write-only, at a  maximum write-in  word rate of one word every 23 
microseconds. 

Trade-offs  among  the  parameters can reduce  memory  size and power  consump- 
tion. If the  word  length is extended to 200 bits,  for  example, and t h e  write-in rate 
decreased  to one  word every 80 microseconds,  the maximum  power would decrease  to 
110  watts,  the  size  to  4  cubic feet and the weight to  374 pounds. 

The  present  status of t h i s  development is that of attempting  to  fabricate  the 
256 x 256 bit planes. Hence, no system  reliability  data is available.  Therefore an 
attempt  to  estimate a MTBF  figure  by  considering only the plane  edge  interconnections 
and the  number of semiconductors  will be made.  The  interconnections  will  be 
1,600, 000 for  the 108 bit  memory  (versus 180, 000 for  the  plated  wire  memory) and 
t h e  number of integrated  circuit  packages  plus  discrete  semiconductors  total 4481. 
Assuming 10-9 per hour failure rate for interconnections,  the  interconnection are the 
dominant  factor, so that  changing  the  failure rate for  semiconductors  from 10-8 to 
10-9  only changes  the  calculated  MTBF  from 4900 to 6000 hours. 

The  small signal amplitudes and the  nature of the  read-out  system  requires  a 
consideration of effect on reliability of coherent  noise  in  the  sense  lines and random 
noise in the  sense  amplifier.  This is calculated  to  correspond  to  an  erroneous  reading 
of one bit every  10,000  hours, which  may be detected and corrected by repetition of 
the  interrogation. 

A cost figure of 0.083 cents for electronics plus 0.056 cents  for  memory  planes 
is estimated  for a total  cost of 0.139 cents  per bit. 

313 



B1.3 Flat Film  Strip Memory 

Lincoln Laboratories is engaged in the development of a mass  memory  using  flat 
magentic films at  very high storage density. 

The  storage  elements are formed of rectangular  glass  strips coated first with 
permalloy and  then copper.  These  strips are etched  into 2 mil  lines on 4 mil  centers 
terminating in a pattern of lands which provide fan-out to a pressure  connector. 
Twenty-four of these  substrates,  each 2 f t  by 1 inch, are placed side by side  forming 
a square plane  and  another similar plane is placed  above  it with its strips lying per- 
pendicular  to  the first set, with an  insulating  layer between. A square  array  results 
with 6K bits on a side  for a total of 36 x 106 bits. 

Current work on the  project is centered about the  assembly of a one  million bit 
model  using 10 inch substrates. Recent  experiments  center about a bit  density of 250 
words  per  inch and 50 digits  per inch, i. e., 12.500 bits  per  square inch. (Refer- 
ence 28) Cost  projections are in  the  order of 0.3 cents  per bit. 

While this approach  achieves  extremely high density  for  the  memory  stack, it 
also  has  several  unfavorable  characteristics. High coercive  force  films are used  to 
reduce  the  effects of demagnetizing  fields at the high bit  density, which require cur- 
rents in the 100 to 500 ma. range. Read-out is destructive and, therefore,  all  bits of 
a word must  be  rewritten  each  time after reading, which results  in  excessive power 
consumption  in this application when the  ratio of read  to write cycles  exceeds one. 
The  destructive  readout  characteristic  precludes the  sharing of bit  line  circuits so that 
the  linear  select  organization  requires many more  circuits than  the  plated  wire  or 
etched  toroid  approaches.  Since  reliability of the  system is so strongly dependent on 
the  electronics, this approach  to  the  mass  memory  requirement  does not appear 
favorable. 

BL4 BORAM 

A  type of mass  memory that seems  to  be well  adapted to  this  requirement is that 
being  developed  under the BORAM concept. BORAM, an  acronym  from Block Oriented 
Random Access  Memory, has  been  promulgated by the U. S. Army  Electronics Com- 
mand at Fort Monmouth, New Jersey. 

The  basic  idea of  BORAM is that  the  mechanization  be an all-electronic or  
static  type  memory with rapid  random access  to the  blocks of data (1 microsecond 
access  time) with the  subsequent  sequential  transfer of a block on a character-by- 
character  basis. A 1. 5 to 3 million character  per second transfer rate is envisioned. 
Other requirements in the  total concept  include removable  storage  media and asynch- 
ronous transfer capability. 

From  the viewpoint of the  mass  storage  requirement of the  study, the memory 
would appear as a group of serial storage  devices with random access  to  each  device 
and serial access to the  bits within the  selected  device.  The  important  advantage is the 
large  factor of minimization of electronics and interconnections and the consequent 
gain in reliability. 

A specific  implementation of the  mass  memory under this concept  cannot be 
delineated at the  present  time  because  applicable  devices are in  the early stages of 
development. Among these developments the  most  interesting  ones  include a 
ferroacoustic  delay line, a thin  film  storage  strip which responds  to the  field from a 

314 



propagating  domain  wall  in an  adjacent  strip, and a new technique  which utilizes  the 
controlled  propagation  and  interaction of domain tips  through a pattern of magnetic 
film  channels  (Reference 29). 

It is reasonable  to  assume  operating  goals  for  these  devices, with resped ' to  
speed and density, of 10,000 bits  per  square inch  and 1 megacycle serial data  transfer 
rate. Then 20 of these  devices  each  storing 5 x 106 bits could  provide the  required 
108 bit  storage.  Since  random accesi   to any of the twenty blocks could be attained 
very rapidly, the maximum access time would be  approximately  five  seconds.  Since 
the  total  circuitry would be  reduced  to  the  selection  circuits  for  the twenty blocks, 
driver  circuits (probably a maximum of four  per  block) and a read amplifier  per block, 
system  failure due  to  the  electronics could be  made  very  small. 

The  aspect of this  approach  that is unfavorable is the  uncertainty of t h e  develop- 
mental  time  scale which willdlow  mechanization of the  system. 

B1.5  Reliable BackuD Mass   S torae  

The  backup mass  storage is used  to  store the  guidance and control  functions that  
would be  necessary  to  complete  the  mission if t h e  primary  mass  storage  was to fail. 
This  memory should, of course,  be  very  reliable and in  fact, it is probably  reasonable 
to  carry a spare due to its relatively  small  size,  approximately 2 x l o5  bits. Although 
extensive  investigation of the  mass  memory  was not  planned for this study, it appears 
that  the backup storage could be  read. only. This, of course, would provide  obvious 
reliability  advantages  due  to the lesser numbers of circuits. 

A number of possibilities exist for  this memory. One is a fixed  memory,  such 
as the "Silicon on Sapphire Diode Array". A second is a memory of the same technol- 
ogy as the primary  mass  storage only without write  circuits.  The  best  solution will 
depend on the  relative  reliabilities and power  and on the  ability of the second approach 
to use spares  from  the  primary  mass  storage. 

BL 6 Conclusion 

The above discussion  demonstrates that there are a number of memories on the 
order of 108 bits  either  under  development or being  considered  for  development; 
however, the  near  term  systems are large and also  dissipate a good quantity of 
power. If any of these approaches are to  be  made  applicable  to  this study,  both the 
power dissipation and size will  need to  be  substantially  reduced.  Future  developments 
along the  lines of "BORA"*  may  offer  the  best  system for space. 

315 





- APPENDIX c= FAULT AND ERROR CONTROL 

Faults can  lead  to the  generation of e r ro r s  and can  cause down time. It is 
therefore  necessary  to  consider  the  risks  associated with the possible  occurrence of 
faults as well as methods of remedying or  at least  reducing the i r  harmful  effects.  The 
harmful  effects of errors  can  be  reduced by error  correction  or by special  treatment 
of erroneous  results. Down time as a result of faults can be reduced by reconfiguring 
the system  to evade  the  effects of known faults and by diagnosing faults so  that repair 
is facilitated. 

Techniques for  overcoming  these  harmful  effects may require an enlargement of 
t h e  system. Two questions  regarding t h i s  enlargment of t h e  system arise. First,  the 
enlarged  system  contains  more  elements which can  become  faulty and therefore is 
more likely  to contain a  fault. Hence, it is natural  to ask  whether or not there will 
indeed be a net  enhancement in reliability.  This  question will be  treated in sec- 
tion C 2 . 1  . 

The  second  question  involves the  additional  costs,  the  additional weight and t h e  
other  penalties  associated with the enlargement of the  system. Will improvements in 
t h e  system  be worth the  price 7 To answer  this  question  rationally,  it is  necessary to 
optimize  the  relationship between the  penalties,  the  probability of mission  success and 
the  expected  productivity of the mission. 

Three  processes used  in  overcoming  these  harmful  effects will  be consdiered- 
e r ror   o r  fault  detection, error  treatment, and system  reconfiguration.  The  techniques 
used  will  usually  involve more than one of these  processes. Also, it  is  sometimes 
difficult to  determine  where one leaves off and the  other  begins. However, it is useful 
to  consider  the  characteristics of these  processes  separately.  Error o r  fault  detec- 
tion  involves the  determination  that an e r ror   o r  fault is or  is not present and also  the 
initiation of an alarm or  corrective  procedure when appropriate. Error   or  fault detec- 
tion  may be  performed fo r  every  step of an operation, it may be  performed  after the  
completion of a set of operations, or  it may be  performed  periodically. When e r ro r  
detection is performed  for  every  step of an  operation,  redundant  computing  elements 
are  usually  introduced  into the  system. When it is performed upon the  completion of a 
set of operations,  redundant  computations are  performed. When fault  detection is 
performed  periodically, a self-test  program is used.  This  self-test  program will not 
detect faults causing  intermittent errors  unless they occur  during  the  self-test 
program. 

Treatment of e r ro r s  may  involve error  correction by redundant  logic, e r ro r  
correction by roll-back, or  special handling of erroneous  results.  Error  correction 
does not necessarily involve e r r o r  detection.  Therefore, it may be  necessary to 
include in check-out procedures  some  provision  for t h e  detection of faults whose 
e r ro r s  are corrected.  This could be done by injecting e r ro r s  into the system  to 
determine whether or  not they are corrected  or by disabling  redundant features during 
check-out. 

Roll-back procedures are simplest when they  involve transient  errors. In th i s  
case, a recaIculation  performed in exactly  the  same  manner as the  original computa- 
tion will produce the  correct  result when the  transient  error  does not recur.  For 
reproducible errors,  the roll-back  procedure would be  more complicated.  The  recal- 
culation  then  must  use  different  logic  paths  to  evade  the fault causing the e r ror   o r  to  
correct  the  error.  This will be  treated in further  detail in section c. 2 .2 .  

317 



. System  reconfiguration  involves  the  removal of a fault  from  the  active  system  or 
the introduction  into the  system of a means of correcting  the  errors  due  to the  fault. 
The  most  simple  techniques involve the  removal of the faulty  element  from the  active 
system. However, it is possible  to  resequence  the  operations of the  system so that  
the faulty  element is not used in a manner that will cause an uncorrected  error. 

Faults of the following types will be  referred  to as "standard  faults" hereafter 
in this  report 

1. An open input to a gate 

2. The  inability of a gate  to  drive  to  zero the  node to which its output is 
connected. 

3. The  inability of a node to go to one. 

C 1. TECHNIQUES  FOR FAULT OF ERROR DETECTION 

This section will treat methods of detecting e r r o r s  in data  processing  operations 
and methods of detecting faults thru  the  errors they  cause. 

Most of the  error detection  techniques  treated in this  section involve the use of 
redundant  hardware  for  checking  each  step of a computation as it is performed. 
However, some  consideration will be given to   e r ror  detection  techniques  in which some 
of the  computations in a program are used  to  check the  results of other  computations. 

Most of the fault  detection  techniques  used involve the  use of self-test  or diag- 
nostic  programs.  These  programs are used at various  times  to  verify that there are 
no faults in the  system  or  to help locate  faults which  may be  present  in  the  system. 
Usually self-test or  diagnostic  programs in a general  purpose  computer  do not  involve 
special  circuits  other than circuits  for responding  to  the  detection of a fault, although 
provisions  for  disabling  self-correcting  features or  alternately  injecting  errors may 
be  required  for  checking out redundant circuits. Other fault detection  techniques  utilize 
special  hardware  to  detect  specific  faults,  for  example, a circuit which will, generate 
an alarm if clock  pulses do not occur  regularly. 

The error  patterns which are to  be  detected by specific  fault  or e r r o r  detection 
techniques a r e  established by one of two approaches.  In the  first hardware  oriented 
approach, an effort is made to consider the  faults  or combinations of faults which may 
occur and, from  these,  to  determine a set of possible  error  patterns.  This method 
has  the advantage of making  it  possible fn principle  to  assign a failure rate to  each 
e r ro r  pattern. Hence, if any  combination of faults is considered  to be so improbable 
that the  associated error  pattern can be neglected,  then a failure rate can  be  assigned 
to  that  neglected  pattern.  From  this, a summation  can  be  made  to  obtain  the combined 
failure rate of all known neglected error  patterns. However, to obtain the  failure rates 
for unknown faults,  experimental  techniques are required. 

In the  second  functional  oriented  approach,  the set of error  patterns  to  be 
detected is established without considering  the  logical  details of the  systems or   the 
faults which may  occur.  This method makes it possible  to  design  the e r ro r  detection 
procedure  prior  to  the completion of the  logical  design. If intelligently  used, it could 
detect  most of the  reasonably  probable error  patterns and some  others  besides. 
However, for  fault  detection,  this  approach is inefficient.  To be  certain that all 

318 



possible  faults  have had opportunities  to  generate  errors, it is necessary  either  to 
examine the loglc  structure  or  to  check many  functional  situations to be confident that 
d l  logic paths have been used. 

Fault detection and e r r o r  detection  techniques  have  different  principal  objectives. 
Fault detection  equipment is designed  primarily  to  prevent a fault  from  causing  future 
error8 rad to  initiate its removal  from  the  active  eystem.  It may also  invalidate 
erroneous reeults before  they are used. Error  detection  equipment is designed  pri- 
marily to initiate the  correction of m e r r o r  or epecial handling of erroneous 
reeults. However, an alarm  from an fault  detection  system  may  also  perform  some 
o r  all of the  principal  functions of an alarm  from an e r r o r  detection  system  and  vice 
versa. 

With these  general  concepts  in mind, specific  fault  detection and e r ro r  detection 
techniques will be  considered. 

CL 1 Continuous Error Detection o r  Fault  Detection 

CL 1.1 Data Transfers 

Self-checking  codes  can  be  used  to  verify  the  accuracy of a data  transfer.  The 
theory of self-checking  codes  has  been  intensively developed. Therefore  further 
comments of a  general  nature on this topic are not in orcer. 

CL 1.2 Memory 

Self-checking  codes  can  be  used to  verify  the  accuracy of transfers between 
memory and the  other  modules. 

Self-checking  codes  can  also  be  used  to  verify  the  address.  Extra  bits  can  be 
hard-wired  into  each  memory  location.  These  bits could be concatenated  with  the 
address  to  form a  self-checking code. For  these  extra  bits,  sense  amplifiers would 
be  required,  but  inhibit drivers would not be required. 

Decoding circuits can  be  checked  by  feedback  and  comparison  with  the  original 
code or  address  to  verify  that  the  proper signal alone is generated. 

The  memory cells of a DRO memory  could  be  checked out before  information is 
stored into  the  memory  location.  This could be  accomplished by adding an extra read 
operation at the  beginning of a write  cycle.  This would add a half cycle  to  every 
write cycle, but would not affect  the read cycle.  The  sequence of operations  for 
writing with the  memory cells checked  before  writing are as follows: 

1. Insert  ones in all bits of the  memory  data  register 

2. Write 

3. Insert  zeros in all bits of the  memory  data register. 

4. Read (thus  inserting  ones in t h e  memory  data register bits  corresponding 
to  ones in memory cells of the  addressed  location) 

5. Test  the  memory  data register. If any bit  contains a zero go to an e r ro r  
routine. 

319 



6 ,  If all bits of the  memory data register contain  one& tranrfer  the word to  
be  stored  to  the  memory data re@ster. 

7. Write 

Thie fault-checking  routine will protect  the stored data  from  faults in the  mem- 
ory cells themselves. However, it will not provide  complete  protection  from  faults in 
the  write  circuitry. Reardlng back the stored word would provide  this  protection, 
especially in NDRO memories. 

Residue  checks are performed by adding in mod n  arithmetic  the addend  and the 
augend used in an addltion. The result should be  congruent (mod n) to  the sum. If 
the sum is in error by an amount  which is divisible by n, the  residue  check  will not 
detect  the  error. 

3- many adders,  most faults will cause  errors which are a power of two. Thus, 
if n = 2 1, most e r ro r s  wlll be  detected. 

If the  adder  operates in mod 2p arithmetic,  overflow is equivalent to a  subtrac- 
tion of 2p from  the  answer.  Therefore  some  provision  must  be  made  for  overflow  in 
designing a residue  check  unless  the  modulus of the  arithmetic is divisible by the 
modulus of the  residue check. If the  adder  operated in 2=-l arithmetic,  the  modulus 
of the  adder  will  be  divisible by the  modulus of the  residue  check if r is a multiple of k. 

CL 1.3.2 DuDlication Check 

Addition can  be  checked by duplication of the  adder.  The  result  obtained  from 
the two adders is compared  to see if they are  the  same. A check of this  nature will 
catch any faults which may  occur in one  adder  provided that the  other  adder . makes no 
errors.  This technique is especially  advantageous if reconfiguration is provided  for. 
If the  self-checking  doctrine is abandoned,  one of the  adders could carry on if the 
other  failed. 

.CL  1.3.3  Complementation  Checks 

In mod 2" arithmetic  there are three inputs:  the addend, the augend  and the 
input carry  to the  units  bit. Now, if 

s = A + B + C o  

(Zn - 1) - 6 = ((2" - 1) - A) + ((2n - 1) - B) + (1 - C) + 2n 

or 

320 



In otherwords, if the  ones  complement of the input operands  to a mod  2n addition is 
formed,  then  the  ones  complement of the  sum is formed.  Similarly, in mod 2"-1 
addition 

s = A + B  

8' = A' + B' (mod 9-1) 

One can therefore check an addition  by calculating the  sum, and then  calculating the  
sum of the complements and finally seeing if the  results are ones  complements. 

It should be noted (See Figure C-1) that it is possible  to  construct an adder so 
that  the signals at all the nodes of t h e  adder are complemented if all the  inputs of the 
adder are complemented. If an adder is thus  constructed. a "standard" fault will 
cause an e r r o r  in one but  not  both of either  the  sum or the  sum of the complements. 
Thus a complementation  check  will  detect all standard e r ro r s  in an adder of th i s  
structure. 

CL 1.3.4 Self-checking  Adder 

Figure C-2 shows one bit of an adder with internal  self-checks. An e r ro r  
caused by a single  standard  fault will be  detected. 

If an input to any decoding gate is open, for  some  values of t h e  operands there 
will be two sum-carry  combinations  indicated. If these two combinations have the 
same carry, both s and Twill  be indicated, This will cause the gate connected to s 
and E to go low and indicate an error. When the inputs are complemented, t h i s  fault 
will have no effect so that t h e  correct  answer will be obtained and no e r ro r  will be 
indicated. It can then be  stated that the fault has been  evaded  by  complementation. 

If the two combinations of sum and carry  simultaneously  indicated have the  eame 
sum but different  carries, all the sum-carry  combinations of the next stage will be 
inhibited.  Hence all four  sum-carry nodes  will  be high and the "no output" error   for  
the next node will be indicated. 

If standard  faults of type b and c appear,  the errors  associated therewith will 
cause two sum-carry nodes to  be  zeros or all sum-carry nodes to  be ones. 

If the Acc. Bit  does not go into  the  correct  state, a fault will be indicated 
because  the state of the flip-flop does not match  the s or B signal. If neither s or ZT 
is high a similar alarm will appear. 

Faults inhibiting the  detection of an alarm will not cause an error  unless  some 
other  fault is present. However, these faults may stifle alarms. To avoid degrada- 
tion of the  system leading  ultimately  to  undetected errors ,  it would be  desirable  to  be 
able  to  verify that there are no faults  inhibiting  alarms.  The  gate  for  causing one of 
the nodes to equal  zero  incorrectly  can  be  used in  checkout to  demonstrate  that having 
two gates equal to  zero can be detected. 

Similarly, it is possible  to  verify  that there is no  fault  preventing  the  detection 
of a condition in which all sum-carry nodes  equal  one. This is accomplished  by a fifth 
input on one of the  adder gates to  make that  gate have an  incorrect one output. This 
is required  for  the units bit only. 

321 



" 

f i Y  D 

1 cn(Xey) , - CARRY OR 

X 
- 

X@Y 
HALF . 

ADDER  ADDER 
HALF SUM 

Y _I 

i - 
C 

FIG. C-lA ADDER  WHOSE FAULTS CANNOT BE  DETECTED 
BY COMPLEMENTATION, THE SIGNALS xny, x ~ p  AND cn(xmy) 
ARE NOT ALWAYS COMPLEMENTED WHEN x, y, A N D  c are 
COMPLEMENTED 

x x y j c c  
- - 
" 

S 

C 

F 

FIG. C-1B ADDEq IN WHICH 
STANDARD FAULTS CAN BE 
DETECTED BY COMPLEMENTATION. 
THE SIGNALS A T  ALL NODES  ARE 
COMPLEMENTED WHEN THE 
INPUTS ARE  COMPLEMENTED. 

Figure C-1. Detection of Standard Fault6 by Complementation 

322 



T 
J 

Figure C-2. Self-checking Adder Without High-speed Carry 

323 



An additional test device  to  force  the  Accumulator  bit  into  the  wrong state 
verifies that the "wrong state" alarm is not  inhibited. 

Faults freezing the e r r o r  node into the  zero state cannot be  evated  by  comple- 
mentation. Note that  the signal on this node is not complemented when all the inputs 
to  the  adder are complemented. 

CL 1.3.5 Parity Check 

Figures C-3  and C-4 show a technique for  performing a parity  check on an 
addition. It should be noted that  the i th  bit of the  sum is given by the  formula 

Si = Ai 8 Bi 4 Ci 

P(B) = Bo 8 B1 63 . . . 63 Bn 

P(C) = co 8 c1 8 . . . 4 cn 

Also, the  parity of the  sum is 

P(S) = so 8 SI 8 . . . 8 sn 

= (Ao Q Bo 8 Co) 8 (A1 63 B1 8 C1) 8 . . . 8 (An 8 Bn 8 Cn) 

= (Ao %3 A1 8 . * .  8 An) 8 (Bo Q El 8 . . . 8 Bn) 8 (Co 8 C1 8 . . . 8 Cn) 

P(S) = P(A) 8 P(B) 63 P(C) 

Now, when parity  bits  are  used  for checking data  transfers, P(A) and P(B) are carried 
along with A and  B. Therefore P(S)  can  be  calculated  from  P(A),  P(B) and the carries 
into  the  adder  bits as  shown in Figure C-4. Also shown in Figure C-4 is the  parity 
checker  used  to  verify  that the  addition is correct. The  .parity  check is not  sufficient 
to  guarantee that the addition is correct.  The  carries may  have been  incorrect.  Since 
the  parity check uses  the  carries to  compute the  required  parity of the sum, an e r ro r  
in a carry would cause not  only an e r ro r  in t h e  sum but also an equivalent e r ro r  in the 
sum  parity bit.  Thus  a further check on the carries. In Figure c-3  the  carries  are 
checked by generating both carry and not carry  for  each  bit.  Then  the  results  are 
compared by exclusive  or  networks. 

Note that  in  Figure C-5 either the  parity  checker  or the parity  generator has an 
even number of bits.  Thus one of these must have at least one node which is not com- 
plemented when the  inputs a re  complemented. In the  example shown in the figure, 
there  are an even number of data  bits.  Therefore  the  parity  bit  for the sum is the  
same as the  parity  bit  for the complement of the  sum. 

324 



- 1  

c2T 
E 

cO 

Figure C-3. Two Bits of Adder Used.in Parity Checking Addition 



I 111111111111 1111111111111 

AUGEND  PARITY  BIT 

ADDEND  PARITY BIT I 
”_ 

‘n s2 ‘1 P + ‘n-1 ‘1 ‘0 

ADD 

PARITY 
GENERATOR 

ACCUMULATOR - 
(OUTPUT EQUALS THE 
COMPLEMENT OF THE 
PARITY OF THE INPUTS) 

n 2 1 P 

A CHECK  ADDITION 

SUM OK 

PARITY - EVEN 

CHECKER 
ODD PARITY REQUIRED FOR 
ADDEND, AUGEND 
AND SUM 

Figure C-4. Parity  Checker Used in  Parity Checking Addition 

EVEN 

Figure C-5. 3-Bit Parity  Checker 

326 



Cl. 2 Periodic  Fault Detection 

Fault  detection is performed by self-test  programs  executed at regular intervals. 
The  purpose of these  programs is to  detect the  presence of faults so  that they  can be 
removed  from  the  active  system. Fault detection will not determine  whether  or not a 
discovered  fault had caused  an  error. However, it can  verify  that the  computations 
made up the last time the  computer  was found to  be  fault-free are free from  reproduc- 
ible errors.  On the  other hand, it is doubtful that  fault  detection  techniques will  check 
for  marginal conditions so thoroughly  that  protection  from  transient e r ro r s  could be 
guaranteed. 

The self-test program  carried  to its ultimate  conclusion  will  check  each  logic 
path thru  the equipment so that if any fault could effect  the  signals th ru  any logic  path, 
an e r r o r  will be  detected. 

Practical  limitations may interfere with the achievement of this objective. For 
example, the e r ro r s  due  to  some  faults do not  always  have  reproducible  effects. For 
example, a spurious  signal  might  attempt  to set a flip-flop  while a correct  signal 
attempts  to reset the flip-flop. If there are no loading  conditions or  permanent  circuit 
parameters  permanently  biasing  the  response of the flip-flop to  the  racing condition, 
the  effect of the  spurious  signal on the  state of the flip-flop is not reproducible. 

The  self-test  program may attempt  to  detect  faults  causing  non-reproducible 
effects.  This might be done by exercising these marginal  logic  paths  under  a  variety 
of conditions o r  at least  exercising  them  repeatedly in t h e  hope that  conditions which 
could cause an e r r o r  would arise accidentally. 

A limitation, which also  applies  to e r ro r  detection and error  correction, 
involves the difficulty of listing all possible  combinations of faults and determining 
the i r  effects.  First,  there is the  theoretical  difficulty of conceiving all  the  possible 
failure  modes, Second, there is the  effort involved in determining  the  effects of each 
of an overwhelming  number of possible fault patterns.  Thus,  it is necessary  to  limit 
the  number of fault  patterns  investigated. A good approach is to  limit  the  investigation 
to  single  faults  plus  possibly a few multiple  fault  patterns  caused by the  same nucleus 
of failure. 

By arranging  the  self-test  program so that  the  logic  paths involved in each  test 
involve  many previously checked  logic paths and only a few new logic  paths,  the  effect 
of multiple failures upon the execution of the  test  program is reduced. 

Performing  the  self-test  program  frequently,  reduces  the  probability  that two or 
more  statistically independent faults will develop  between  two  check-out  operations. 

It should be noted that  even  through  uninvestigated failure  patterns may occur, 
there is a good chance that they may be  detected even though reliable  diagnostic 
information for locating th i s  exotic  fault  pattern is not available. 

CL 3 Programmed  Error Checks 

It is possible  for the programmer  to  verify the accuracy of many of his  results 
by adding extra instructions  to  his  program. 

327 



a 

An example of how results can be checked  can be drawn  from  the  matrix 
multiplication 

h 
Ai. b. = C 

3 i  
(i = 1, 2, . . . , m) 

j=l 

The  programmer  can add instructions  for  computing 

2 A. 1. = Ai (j = 1, 2, . . . , h) 
i=l 

h 
Ajbj = C 

j = l  

and determining  whether  or not 

5 c i = c  
i= 1 

Other  checks can be  designed  for  other  types of computations. 

These  error  checks  provide good protection  from  faults. However, there  is  
always  the  possibility  that  some  fault  might  cause  an e r r o r  in  the  results and an 
equivalent e r ro r  in the  check.  To  design  the  check  calculation  to avoid this  risk would 
require  an  extensive  logical  analysis of the  error  patterns due to  possible  faults. 
Through  extensive  software  development, a procedure  for  automating  this  analysis 
might be developed. 

c. 2 TECHNIQUES  FOR  TREATMENT OF ERRORS 

Errors  may  be  treated  in two ways - they  may  be  corrected or  the  erroneous 
results  may  be  subject to special handling  (probably  rejection). When erroneous 
results are given special handling, the  manner  in which they should be handled is 
normally  more  closely  related  to  the  application  than  to  the  computer  hardware. 
Therefore,  the  remainder of this  section will be devoted  exclusively  to e r r o r  
correction. 

C. 2 . 1  Error  Correction by  Redundant  Logic 

C. 2.1.1  Self-correcting  Codes 

The  most  thoroughly  explored area of error  correction  thru redundancy is the 
self-correcting code. The  theory of self-correcting  codes is related  to  the  theory of 
self-checking codes. Since the  general  theory is widely known, it will not be discussed 
further. 

When self-correcting  codes are used, it is possible  to  correct  the  error without 
setting  an  alarm  indicating  the  existence of the  error. 

328 



(2.1.2  Self-correcting  Logic  Circuits 

Logic  networks can be so constructed so that a single  standard  fault in a segment 
of logic  will  not cause  an  error.  Furthermore, many  other  types of faults  causing an 
erroneous signal at only  one node within that  segment of logic  will not cause an e r r o r  
at the output of the  network. Many techniques have been  developed for  this  type of 
redundancy. Among them is Quadded Logic. 

The  reliability  advantage of self-correcting  logic  will now be  discussed.  Assume 
that  the  probability of a fault  in a segment of logic is p  and that all faults are statis- 
tically independent of one  another. Also assume  that a new redundant  system  will con- 
tain  one  logic  segment  and  will f a i l  if there is a single  fault and that a redundant  system 
will  contain  n  logic  segments and will fail if there are faults in two or  more  segments. 
The  probability  that  the non-redundant system  will not fail is 

(1 - P) 

The  redundant  system  will not fail if none of t h e  logic  segments  contains a fault. 
The  probability  that none of the  logic  segments  contains a fault is 

(1 - PI" 

Also, it will not fail if only one logic  segment  contains a fault.  The  probability  that 
exactly one logic  contains a fault is 

Hence, the  probability  that  the  redundant  system  will not fail is 

so tha t  the  probability  that it will  fail is 

1 - (1 - pin - np(1 - p) - n-1 n(n - 1) 2 2n(n-  1)@ - 2) 3 + 3n(n-  l)(n- 2) 3 
2! p - 3! P 4! p -... 

Hence the  probability of failure  for  the redundant  system is not greater  than 

Therefore  the  probability of failure is less for  the  redundant  system  than  for  the non- 
redundant  system if 

If faults are not  eliminated  from a redundant  system  during check-ouc, its 
advantage in enhanced freedom  from  uncorrected  errors is diminished. Suppose that 
there   are  N logic  segments  in  the non-redundant system and N corresponding sets of 
n segments  in  an  equivalent  redundant  system.  Then  there  will  be  an  uncorrected 

329 



e r r o r  in the non-redundant system if there is a fault in any segment and there will be 
an uncorrected error  in  the redundant  system if there are two faults in any segment. 

The  probability  that  there are no faults in any of the N segments of the non- 
redundant  system is 

If each of M sets of segments in the  redundant  system  has a single  fault,  the 
probability  that none of these M sets of n segments  has  more  than one fault is 

The  probability  that  none of the  remaining N-M sets of n segments  has two faults 
is 

Therefore,  the  probability  that  there  will  be  no  uncorrected  error in N sets of n 
segments in which m sets of segments  contain a single  fault is 

The  probability of no uncorrected e r r o r  
if 

N-M 
(1 - p)(n-l)N [ 1 + (N - l ) p ]  = 

1 <  
(1 - PIN 

will be greater for  the redundant  system 

Let 

Then this condition becomes 

(n-2)N 

This is equivalent to  the  condition 

330 



Now the  first  factor is the  probability  that  there  will  not be two faults in a set of n 
segments.  This is less than one. The  second factor is greater than one. Hence B 
must  be  positive and it must  be  large enough to  compensate  for  the  first  factor. Note 
that B > 0 if 

N > (n - l)M. 

C2.2  Error  Correction by Rollback 
. ~ ~ -  

If an   e r ror  is detected it is often  possible  to  correct  the  error by repeating 
the calculation. 

Usually  rollback  procedures  repeat  the  calculation  using  exactly  the  same  logic 
paths as were  used when the  error  occurred. Such procedures  can  correct  transient 
errors.  The  number of times  the  same  calculation  can  be  rolled  back  before  an  alarm 
is set is usually  specified. If this  number is exceeded, it could be decided  that  the 
e r r o r  was not transient. 

It is also  possible  to  roll  back  some  computations so that  the  logic  paths  used in 
the  second  computation are different  from  those  used in the first. If an adder is 
structured so  that  complementing  the  inputs  will  complement  the  signals at all nodes, 
a simple  roll  back  procedure  suggests itself. If an e r r o r  arises in  the  performance of 
an addition,  complement  all the  inputs  to t h e  adder.  Then  the output of the  adder 
would be  complemented  to  obtain  the  desired  sum.  As  was  previously  explained, if an 
adder  has a structure  satisfying  this condition, no standard  fault will cause both the 
original  addition and the  addition with complemented  inputs to  be  incorrect. 

Other  rollback  procedures  for  addition are possible. For example,  the addend 
and the augend can  be  shifted so that  the faulty  adder bits are confronted  with a com- 
bination of inputs which do. not exercise  the  faults. However, for  an  appropriately 
structured  adder  this technique is less powerful  than  complementation. 

Rollback procedures  often  can be designed  to  take  advantage of the  many  redun- 
dant  paths  in  most  computers  to  correct  an  erroneous computation.  However, the 
design of most of these  procedures  depends upon the  detailed  structure of the  system. 

C3. SYSTEM  RECONFIGURATION OR REPAIR 

Three  courses of action are possible after a system is discovered  to  be faulty: 

1. Discontinue  operations 

2. Continue operations,  accepting  the  possible  consequences of the  faults 

3. Reconfigure or  repair  the  system 

The  first solution is unthinkable. It is the  situation which would have to  be 
faced if all other  available  courses of action are impossible o r  excessively  perilous. 
In most  situations,  this  solution would not be  accepted  unless  the  computer  were a 
failure. 

331 



C6-1476.10/33 

The  second  solution is better. If the  computer  has  built-in error  correction 
features  this solution could be  entirely  satisfactory. If the  system is designed so that 
operations can tolerate  some  errors, continuation .of operations  might still be  accept- 
able as a form  graceful  degradation.  Finally, it might be  possible  to  reprogram  the 
system o r  redesign  the  sequences of operations in some of the  instructions so that  the 
harmful effects of e r ro r s  due  to known faults  will be remedied.  This  approach, how- 
ever, is a form of reconfiguration. 

The  third  solution is reconfiguration or  repair .  In this solution, either  the 
hardware or  the  software is modified to  eliminate o r  reduce t h e  harmful effects of 
known faults. 

C3.1 ReDairs 

Repairs  performed with perfection  will not degrade  operations. However, their 
performance  requires  spare  parts, tools, skills  and/or  time. When these are avail- 
able,  repairs provide the  best maintenance. 

To  make  repairs with a minimum  amount of test equipment, it is necessary  to 
have accurate knowledge of t h e  location of a fault which is to  be removed  from  the 
system.  This knowledge will  be  provided  whenever  possible by diagnostic  programs 
and built-in  fault  detection circuits. 

The  simplest  repair  procedure  involves t h e  removal and replacement of a faulty 
module. This method is the  simplest  to  perform. However, this  means  that  spare 
parts provisioning  must  be  provided at the  modular  level. 

Another repair technique would involve simple  adjustments to remove  from  the 
active  system  faulty  elements within a module. Such adjustments  also would invoIve  a 
knowledge of the  location of the  fault.  Furthermore,  in  this  case,  the fault would have 
to  be located more  closely  than  to  the module. 

A s  an  example of a repair technique by adjustment,  consider a memory with a 
spare bit  position. If one of t h e  active  bit  positions  was found to  be defective,  the 
fault could be  remedied  by  disconnecting  the  faulty  bit  position and connecting  the 
spare bit  position  into its place. 

The  facility with  which this could be  performed would depend upon packaging 
techniques. One technique  which would facilitate t h i s  type of repair would be a circular 
connector. All bit positions of the  memory would be connected to  the  memory  side of 
the  connector. However, on the  computer  side of the  connector, one pin would not be 
connected. lf one bit of the  memory were found to be faulty, the  connector could be 
rotated so that  that  faulty  bit  position would be connected to  the disconnected  pin on the 
computer  side. 

C3.2 Reconfirmration 

C3.2.1 Reconfirmration at the Model Level 

The  simplest  form of reconfiguration  involves  switching out a defective  module 
and possibly  switching  in a sound one. For  this  technique, it is necessary  to  divide 
the  system  into  modules and to have more  than one  module of each  type. Some modules 
may  be  spares. In this  type of reconfiguration,  no  operational  degradation  occurs 
until  the  spares are consumed. 

332 



C3.2 .2  Reconfiguration at the Sub-Module Level 

The  reconfiguration  need not be done at the module  level. Spare  logic  circuits 
can  exist within a module.  Then, a register can  be  used  to  control  the  selection of 
circuits used. If e r ro r  detection or  error  correction  circuitry are used, it may be 
desirable  to  provide test modes for switching  out  some of the  redundant  circuitry 
while the cooperating  logic  elements are bein&, checked out. In systems with this 
feature a test mode  might also  be  used  to  remove  defective  redundant  circuitry  from 
the  active  circuit. 

If a  memory or  a transfer  bus had a faulty  bit  position and a spare  bit position, 
t h e  faulty  bit  position could be switched out and the sound bit position could be  switched in. 

If a mod 2n-1 adder had a  faulty  bit  position,  the  adder could be  converted  to a 
mod 2n-1 adder by breaking  the  connections between the  defective  bit and its neighbors. 
In this  case,  it 1570uld also  be  necessary  to  reconfigure  the sign tests s o  that  the  proper 
bit would be  tested  as  the  sign. An equivalent  effect could be  obtained by inserting a 
spare  bit in the  adder and disabling it. Then, if a bit  were found to  be defective, the  
spare  bit would be enabled and the  defective  bit  disabled. 

In a micro-programmed  computer,  a  defect in the  memory  storing  the  micro- 
program could be evaded by changing the  operation code of the  instruction whose 
micro-program was located in the  defective  memory  locations. 

C3.2 .3  Reconfiguration by Instruction Sequence  Modification 

The  defects of an adder  will  usually  cause an erroneous power of two to  be added 
to  or  subtracted  from  the  results whenever the  operands  cause  certain  logic  paths  to  be 
used.  Thus, if an adder is known to  contain a fault (or several  faults)  the  error pat- 
terns which might occur can be  listed. Hence a roll  back  routine  can  be  designed  for 
correcting the  error  pattern  associated with the given fault. 

A s  the  error  pattern will not occur in every addition, t h i s  roll back  technique 
cannot be  used with every addition. It would therefore  be  necessary  to  use  some 
e r ro r  detection  scheme  to  determine  whether  or not the  operands  currently  being 
combined cause an error.  Thus  the  roll-back  routine should be  used only after an 
error  has been  detected. 

333 





1"- - 

REFERENCES 

1. Study of Subsystems  Required  for a Mars  Mission Module SID64-1-1 through 5. 
Contract NAS-9-1748, Space and Information  Systems  Division,  North  American 
Aviation, Inc. (2  January 1964) 

2. Manned Mars Landing  and Return  Mission Study. SID 64-619-3. Contract 
NAS"1408 ,eandnfo rma t ion   Sys t ems  Division]  North  American 
Aviation,  Inc. (April, 1964). 

"-__I 

3. 

4. 

5. 

6. 

7 .  

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

___ A  Study of Mission  Requirements  for Manned Mars and Venus Exploration 
FZM-4366-3 vol 3. Contract NAS-8-1i%-8, General  Dynamics/Fort Worth 
(30 May  1965). 

Manned Mars and  Venus Exploration Study.  GD/C AOK 65-002,  Vol. 1, 2 and 3. 
Contract NAS-8-11327, General  Dynamics/Convair  (21 May 1965). 

&ace Navigation Guidance and Control, R-500 vol. 1 and 2. Contract 
m 9 - 4 0 6 5 ,  MIT Instrumentation  Laboratory  (June 1965). 

Study of Conjunction Class Manned Mars  Trips. Douglas Report SM-48662. 
Contract NASw-1028, Douglas Missiles and Space  Systems  Division  (June 1965). 

S o h .  Robert  L., "A Chance for an Early Manned Mars Mission" Astronautics 
and Aeronautics] Vol. 3, No. 5, pp 28-33,  May  1965. 

Bell, M. W. J . ,  An Evolutionary  Program  for Manned Interplanetary  Exploration, 
AIAA/AAS Stepping Stones to  Mars M e e G y x a G r e ,  Maryland, 
March 28-30,  -1966,  pp.  87-98. 

Wood,  E.  C. and Greene, D. W., On-Board Checkout System Concept AIAA/AAS 
Stepping Stones  to Mars Meeting, Baltimore,  March 28-30,  1966.  pp.  263-268 

-__ Spaceborne  Memory  Organization  (Appendices)  Interim  Report 120171RI. 
Contract NAS-12-38, Honeywell Systems and Research Division 
(15  December 1965). 

S-IIB Orbital  Launch  Vehicle SID 65-895. Space and Information  Systems 
Division]  North  American Aviation]  Inc. (Sept. 1965). 

Standardized  Space Guidance System,  Autonetics,  Division of North American 
Aviation] Report #SSD-TDR-64-129 Annex G 

Study of an Advanced Energy Management System  for  Re-Entry  Vehicles,  Bell 
Aerosystems Company, FDL-TDR-64-79 

Manned Mars  and/or Venus  Flyby Vehicle  Systems Study, North  American 
Avaitio) 

Data  Compression  by  Quantiles, J P L  Space  Program  Summary, No. 37-17] 
Volume IV 

335 



16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

Study of Spaceborne  Multiprocessing,  Autonetics, Anaheim, Calif., 1st Quarterly 
y 
Study of Spaceborne  Multiprocessing,  Autonetics, Anaheim, Calif., 2nd Quarterly 
Report, Volumes 1 and 2, C6-1476.4/33. 

Study of Spaceborne  Multiprocessing,  Autonetics, Anaheim, Calif.,  3rd  Quarterly 
Report, C6-1476.8/33. 

Modern Probability  Theory and Its  Applications, E. Parzen,  Chapter, 5, a 
Survey of Highly Parallel  Information  Processing Technology and Systems, 
Westinghouse, Baltimore, Maryland. 

Advanced Computer  Organization Study Vol I and Vol 11, Goodyear Aerospace 
Corp. , Akron, Ohio. 

The Solomon Computer,  Slotnick, et. al. , Proc. - Fall  Joint  Computer 
Conference/l962. 

- A Study of Iterative  Circuit  Computers, TDR AL-TDR-64-24, A i r  Force 
Avionics Laboratory, Wright Patterson AFB. 

A Universal  Computer  Capable of Executing an  Arbitrary Number of Sub- 
Programs  Simultaneously,  John Holland, Proc. - Eastern  Joint  Computer 
Conf.  /1959. 

Intercommunicating  Cells,  Basis  for  a  Distributed Logic Computer, C. Y .  Lee, 
Proc. - Fall  Joint  Computer Conf.  /1962. 

Medium-Speed Mass Random-Access  Memory, C.  Chong, G. Reid, 
A . 4 - 5 7 1 ,  March, 1965. 

Study and Investigation of Technique for  Constructing Medium-Speed Random 
Access  Mass  Memory,  Tech. Rpt. No. RADC-TR-64-538, March, 1965. 

A  Magnetic Film  Memory Development Program, I.  I. Raffel,  Lincoln 
Laboratory,  Mass.  Inst. Tech. , IMarch,  1965. 

Controlled Domain Tip  Propagation Part 11, R. I. Spain and H. I. Jauvtis, -~ ~ _ _  
Journ. Appl. Phys. 37,  2584, June, 1966. 

336 NASA-Langley, 1970 - 8 CR-1446 


